Skip to main content

"A simple multi-processing based MapReduce framework"

Project description

A Multi-processing based single-host MapReduce Framework

This is a simple mapreduce framework.

Sample program

from mapreduce import *
from math import ceil, sqrt


def mapper_2(item):
    return (item + 5) * 23 - 1


def reducer_2(accumulated, item):
    return accumulated + item


def is_prime(n):
    for i in range(2, ceil(sqrt(n))):
        if n % i == 0:
            return False
    return True


if __name__ == "__main__":
    N = 150000
    print('* map & reduce ')
    mr = MapReducer().prefilter(is_prime).mapper(mapper_2).reducer(reducer_2, 0)
    result = mr(range(N))
    print('  MR Result  :', result)
    n = sum([(n + 5) * 23 - 1 for n in range(N) if is_prime(n)])
    print('  Validation:', n)

History

0.5.1

  • update examples

  • optimize export & imports

0.5.0

  • process speed optimized

0.1.0

  • First release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mapreduce-py-0.5.1.tar.gz (3.5 kB view hashes)

Uploaded source

Built Distribution

mapreduce_py-0.5.1-py3-none-any.whl (4.4 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page