Skip to main content

Create map images and use as plot background

Project description

maptiles

Plot on webmap backgrounds.

Installation

# from pypi
$ pip3 install maptiles

# alternatively, from github
$ git clone https://github.com/kota7/maptiles.git --depth 1
$ pip3 install -U ./maptiles

Illustrative examples

Map image on matplotlib axes

  • draw_map((lon1, lat1, lon2, lat2)) draws the map image of the specified rectangle behind the matplotlib axes.
  • The function returns a tuple of an Axes (the same object if ax argument is supplied) and AxesImage object of the map image.
  • Visualizations can be added further using the matplotlib features.

Remarks:

  • Longitude and latitudes must be given in angles. Internally longitudes are converted to [-180 to 180) scale. Latitudes must be in [-L, L] with L=85.0511287798. This L is the north and south limit of Web Mercator projection.
  • Zoom level is automatically chosen by heuristic calculation. The z option allows for explicit specification.
  • Aspect ratio is automatically adjusted by heuristic calculation. The aspect option allows for explicit specification.
  • If ax is not given, then a new axes is created internally.
  • The axes will be scaled by Web Mercator formula comaptible with the image.
from maptiles import draw_map

# 5th Avenue in Manhattan, New York
bounds = [286.02288365364075, 40.761816905893156, 286.0257428884506, 40.7593098808893]
fig, ax = plt.subplots(figsize=(10, 10))
draw_map(bounds, ax=ax)

uniqlo = [286.02380633354187, 40.76029726182907]
uniqlo[0] -= 360
arrow_from = uniqlo[0] + 0.0001, uniqlo[1] - 0.0002
ax.annotate("UNIQLO IS HERE!", uniqlo, xytext=arrow_from, fontsize=25,
            bbox={"facecolor": "white", "alpha":0.75, "boxstyle":"round"}, arrowprops={"width":1})
None
Zoom level 18 is chosen

png

# Goryokaku Castle in Hokkaido, Japan
goryokaku = [[140.7545506954193, 41.79877552882002], [140.7546043395996, 41.797391817910004], [140.7536494731903, 41.7962160400744],
             [140.7536494731903, 41.79608006437536], [140.75378894805905, 41.79592009259535], [140.75480818748474, 41.79568013417667],
             [140.75480818748474, 41.79524020807576], [140.75473308563232, 41.79524820675909], [140.7547116279602, 41.79520021464413],
             [140.7548189163208, 41.79519221595479], [140.75482964515686, 41.7948002789552], [140.755033493042, 41.79467229900768],
             [140.75620293617249, 41.79503224195874], [140.75687885284424, 41.794456332266776], [140.75702905654907, 41.79442433713216],
             [140.75724363327026, 41.79444033470147], [140.75735092163086, 41.79449632616259], [140.75838088989255, 41.795648139652975],
             [140.76006531715393, 41.79620004294831], [140.76016187667847, 41.796288027092395], [140.76021552085876, 41.79639200819787],
             [140.7601833343506, 41.79651198618687], [140.75906753540036, 41.7976557650716], [140.75889587402344, 41.79899148100668],
             [140.75873494148254, 41.79915144512023], [140.75859546661377, 41.79919143608624], [140.7584023475647, 41.79915144512023],
             [140.7567822933197, 41.798759532332795], [140.7567822933197, 41.79872753934637], [140.75671792030334, 41.79872753934637],
             [140.75493693351746, 41.79900747743603], [140.75478672981262, 41.79899947922184], [140.75464725494385, 41.798927495249465],
             [140.7545506954193, 41.79877552882002]]
lons, lats = zip(*goryokaku)
bounds = min(lons), max(lats), max(lons), min(lats)
fig, ax = plt.subplots(figsize=(8, 8))
draw_map(bounds, ax=ax)

ax.plot(lons, lats, c="black", linewidth=4, linestyle="dashed")
None
Zoom level 17 is chosen

png

# Royal observatory of Greenwich
bounds = (-0.0092, 51.481, 0.0099, 51.472)
fig, ax = plt.subplots(figsize=(9, 7.2))
draw_map(bounds, ax=ax)

observatory = (-0.0008717179298400879, 51.47732699342673)
ax.scatter(*observatory, marker="x", s=200)
ax.axvline(x=0, linestyle="dotted", linewidth=3, c="blue")
ax.text(observatory[0], observatory[1]-0.001, "Royal Observatory of Greenwich", ha="center",
        fontsize=20, bbox={"facecolor":"lightgreen", "alpha":0.75, "boxstyle":"round"})
None
Zoom level 15 is chosen

png

Obtain the image data as array

  • get_maparray((lon1, lat1, lon2, lat2)) returns:
    • The RGB image data as numpy array of shape (height, height, 3).
    • Tuple of (xmin, xmax, ymin, ymax) defining the area covered by the image.
from maptiles import get_maparray
# Royal observatory of Greenwich, again
bounds = (-0.0092, 51.481, 0.0099, 51.472)
img, extent = get_maparray(bounds)

print(img.shape)
print(extent)
Image.fromarray(img)
(338, 446, 3)
(-0.009226799011230469, 0.009913444519042969, 51.47197425351887, 51.481008725784044)


Zoom level 15 is chosen

png

Tiles

Predefined tiles

  • This package defines a number of map tiles for the convenience.
  • The available tiles are given by the predefined_tiles function.
  • get_tile function returns the predefined tile object (a named tuple).
  • The tile option of draw_map and get_maparray accepts the followings:
    • Name of a predefined tile.
    • URL string with {z}, {x}, {y} format parameters.
    • Tile object.
from maptiles import predefined_tiles, get_tile

list(predefined_tiles().keys())
['osm',
 'stadia_alidade_smooth_dark',
 'stadia_alidade_smooth',
 'stadia_outdoors',
 'stadia_osm_bright',
 'stamen_tonner',
 'stamen_terrain',
 'stamen_watercolor',
 'japangsi',
 'japangsi_pale',
 'japangsi_blank',
 'google',
 'google_roads',
 'google_streets',
 'google_terrain',
 'google_satellite',
 'google_satellite_hybrid',
 'google_h',
 'google_r',
 'google_t',
 'google_s',
 'google_y']
get_tile("osm")
Tile(name='OpenStreetMap, Standard', baseurl='https://tile.openstreetmap.org/{z}/{x}/{y}.png', copyright='© OpenStreetMap contributors', copyright_html='&copy; <a href="http://openstreetmap.org">OpenStreetMap</a> contributors')
# Arc de Triomphe in Paris
bounds = (2.2890830039978023, 48.87102408096251, 2.301185131072998, 48.87695157541353)
fig, ax = plt.subplots(1, 2, figsize=(13, 6))
draw_map(bounds, ax=ax[0], tile="google_streets")   # tile name
ax[0].set_title("Google Street")

draw_map(bounds, ax=ax[1], tile=get_tile("google_satellite")) # tile object
ax[1].set_title("Google Satellite")
fig.tight_layout()
None
Zoom level 16 is chosen
Zoom level 16 is chosen

png

Copyrights of the map tiles

  • This package only provides an interface to access and parse data from map tile servers.
  • The map data belong to the providers and they shall be used in compliant with their term of usage.
  • Examples of copyright messages are given for predefined tiles (Note: not official one).
  • Use get_tile function to use them.
from IPython.core.display import HTML

tile = get_tile("osm")
print(tile.copyright)
display(HTML(tile.copyright_html))

tile = get_tile("japangsi")
print(tile.copyright)
display(HTML(tile.copyright_html))

tile = get_tile("google")
print(tile.copyright)
display(HTML(tile.copyright_html))
© OpenStreetMap contributors

© OpenStreetMap contributors

© 国土地理院 | Geospatial Information Authority of Japan

© 国土地理院 | Geospatial Information Authority of Japan

© Google

© Google

# Add copyright message to the plot
bounds = [-20, 40, 55, -40]
tile = get_tile("osm")
fig, ax = plt.subplots(figsize=(7, 8.5))
draw_map(bounds, ax=ax, tile=tile)
bottom, right = ax.get_ylim()[0], ax.get_xlim()[1]
ax.text(right, bottom, tile.copyright, ha="right", va="bottom")
None
Zoom level 3 is chosen

png

Custom tiles

  • Any tile following the OSM's naming rule can be specified by a URL string with {x}, {y}, {z} parameters.
  • Alternatively, a tile object can be created with the Tile function.
from maptiles import Tile

# Mount Fuji, Japan
bounds = [138.53553771972656, 35.48024245154482, 138.9276123046875, 35.231598543453316]
fig, ax = plt.subplots(1, 2, figsize=(15, 5.6))

draw_map(bounds, ax=ax[0], tile="https://cyberjapandata.gsi.go.jp/xyz/english/{z}/{x}/{y}.png")
draw_map(bounds, ax=ax[1], tile=Tile("https://cyberjapandata.gsi.go.jp/xyz/seamlessphoto/{z}/{x}/{y}.jpg"))
None
Zoom level 11 is chosen
Zoom level 11 is chosen

png

Web Mercator projection

  • This package assumes that map tiles are Web Mercator projected.
  • The Web Mercator is a simplified version of Mercator projection and widely used by standard web maps currently, including the Google Map and OpenStreetMap.
  • The projection formula is the following: $$ \begin{align} x &= \frac{2^{z+7}}{\pi} (\lambda + \pi) \ y &= \frac{2^{z+7}}{\pi} \left(\pi - \mathrm{tanh}^{-1}(\mathrm{sin}; \phi)\right) \end{align} $$ where $\lambda, \phi$ are longitude and latitude in radians, and $x, y$ are pixel indices on the web map images.
  • Since the latitude conversion is non-linear, simply plotting (lon, lat) as (x, y) coordinates may deviate from the map already in the Web Mercator scale.
  • We may think of following three strategies to this issue:
Strategy Pros Cons Parameters to draw_map
1. Plot lon-lat as-is on the same axes as image Simple, works okay for small maps Points deviate for large maps
2. Plot lon-lat on a separate axes with Web-Mercator scaling Can plot with lon-lat, works for large maps Harder to modify visuals due to multi-layer structure scaling=True
3. Plot after projecting coordinates to Web Mercator scale Single layer structure, works for large maps Extra step for manual projection, axis grids are not intuitive extent_crs="webmap"
- Strategy 1 is a simple solution and is recommended if the map area is small and approximation is accepted.
- Strategy 2 works for large maps and coding syntax stays simple. Customization of the visuals can be harder because the image and main plot objects are on separate layers (axes) that share the same bounds.
- Strategy 3 also works for large maps. Manual projection can be easily conducted using [pyproj](https://pypi.org/project/pyproj/) or [geopandas](https://pypi.org/project/geopandas/) libraries. The axis ticks are not intuitive, but one may add grid lines manually to achieve the desired visuals.
  • Examples below show how these strategies work on a small and a large map area.
# Small map example
# Giza's pyramid complex
import pyproj
bounds = [31.12743480300903, 29.9806997753276, 31.135662416839596, 29.971834892057622]
pyramids = ([[31.133075952529907, 31.135404109954834, 31.135404109954834, 31.133075952529907, 31.133075952529907],
             [29.978119871578528, 29.978119871578528, 29.980131892318944, 29.980131892318944, 29.978119871578528]], 
            [[31.129621267318726, 31.129648089408878, 31.131879687309265, 31.131858229637146, 31.129621267318726],
             [29.976925650617314, 29.97499720902611, 29.97501579659361, 29.976911710210015, 29.976925650617314]],
            [[31.127794682979587, 31.128843426704407, 31.128843426704407, 31.127794682979587, 31.127794682979587],
             [29.97205568264347, 29.97205568264347, 29.972931643919026, 29.972931643919026, 29.97205568264347]])
def _plot_lines(ax, lines):
    for p in lines:
        ax.plot(p[0], p[1])

fig, ax = plt.subplots(1, 3, figsize=(16, 6.4))

draw_map(bounds, ax=ax[0], tile="google_satellite")
_plot_lines(ax[0], pyramids)
ax[0].set_title("Plot lon-lat as-is (Works fine for small maps)")

draw_map(bounds, ax=ax[1], tile="google_satellite", scaling=True)
_plot_lines(ax[1], pyramids)
ax[1].set_title("Plot with Web Mercator scaling")

draw_map(bounds, ax=ax[2], tile="google_satellite", extent_crs="webmap")
t = pyproj.Transformer.from_crs("EPSG:4326", "EPSG:3857", always_xy=True)
pyramids_scaled = [t.transform(p[0], p[1]) for p in pyramids]
_plot_lines(ax[2], pyramids_scaled)
ax[2].set_title("Plot after projecting to Web Mercator scale")

fig.tight_layout()
Zoom level 16 is chosen
Zoom level 16 is chosen
Zoom level 16 is chosen

png

# Large map example
# Country polygon data from the world bank https://datacatalog.worldbank.org/search/dataset/0038272
# "World Country Polygons - Very High Definition"
import geopandas as gpd
df = gpd.read_file("WB_countries_Admin0_10m/WB_countries_Admin0_10m.shp")
print(df.crs) # check that the data is in WGS84 or EPSG:4326 system
australia = df[df.NAME_EN == "Australia"]
bounds = (110, -9, 160, -55)

fig, ax = plt.subplots(1, 3, figsize=(16, 6.2))

draw_map(bounds, ax=ax[0])
australia.plot(ax=ax[0], facecolor="none", aspect=None)
ax[0].set_title("Plot lon-lat as-is (Large deviation for large maps)")

draw_map(bounds, ax=ax[1], scaling=True)
australia.plot(ax=ax[1], facecolor="none", aspect=None)
ax[1].set_title("Plot with Web Mercator scaling")

draw_map(bounds, ax=ax[2], extent_crs="webmap")
australia.to_crs("EPSG:3857").plot(ax=ax[2], facecolor="none", aspect=None)
ax[2].set_title("Plot after projecting to Web Mercator scale")

fig.tight_layout()
epsg:4326


Zoom level 4 is chosen
Zoom level 4 is chosen
Zoom level 4 is chosen

png

Implementation details

Database

  • Downloaded image data are stored in the internal SQLite database at config.dbfile. The default location is ~/maptiles.db.
  • By reusing the stored images, we reduce the number of requests to the map tile servers.
  • If you want to delete existing data, either run initialize_database(replace=True) or simply delete the file.
  • One may change the database file location by the set_databasefile function.
import sqlite3
from maptiles import config, set_databasefile

# The database has only one table "tiles"
#   with columns "url" and "image".
with sqlite3.connect(config.dbfile) as conn:
    c = conn.cursor()
    data = c.execute("SELECT url FROM tiles LIMIT 10").fetchall()
print(data)
[('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1812/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1813/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/807.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/808.png',), ('https://cyberjapandata.gsi.go.jp/xyz/english/11/1814/809.png',), ('https://cyberjapandata.gsi.go.jp/xyz/seamlessphoto/11/1812/807.jpg',)]
# Change the database location
set_databasefile("./temp.db")
print(config.dbfile)
./temp.db

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maptiles-0.1.6.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

maptiles-0.1.6-py3-none-any.whl (14.4 kB view details)

Uploaded Python 3

File details

Details for the file maptiles-0.1.6.tar.gz.

File metadata

  • Download URL: maptiles-0.1.6.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for maptiles-0.1.6.tar.gz
Algorithm Hash digest
SHA256 f3c5107fc11fd16218b7d0c4c0dff6038053b25f288b121e7158619eb59dfc72
MD5 9b670ebf72c5b05503a915043feaba6b
BLAKE2b-256 836bb2415f2d966d60cd012faeaaa4eda2d9fc91a172ecc0cf5290371f1f4575

See more details on using hashes here.

File details

Details for the file maptiles-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: maptiles-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 14.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for maptiles-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 2e6682e4a32b7dd94ba29751faf0e1ec1985ffc65b9e08d67a1dc2abbf766d23
MD5 3b636e5e6483ce76996db756e6f324c9
BLAKE2b-256 4686294ad91337477c9334019a96d0ec80f3920ca47dd1a790c1adbea0d6f93f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page