Multi-Agent Reasoning Problem Solver
Project description
Multi-Agent Reasoning Problem Solver (MAR-PS)
MAR-PS is a multi-agent reasoning problem solver. You build teams and they work together to solve the problems you give them.
You can work with them as a member of their team.
Install
It can be installed via pip
with the following command:
pip install mar-ps
Backends
Currently, MAR-PS supports both Ollama and OpenAI as backends. Via the OpenAI backend, you can also use LM Studio models when the LM Studio server is on. Many different systems support the OpenAI API format.
We plan to add support for other backends, such as MLX
or transformers
in the future.
Usage
Here is an example using an Ollama backend. Fist, let's setup the Ollama client and use it to create a model.
from mar_ps import (
OllamaClient, # Ollama API client
MAR, # Multi-Agent Reasoning system class
Model, # the model class
system, # the system entity, for giving the initial system prompt
Message, # the message class
)
ollama_client = OllamaClient()
model = Model("llama3.1", ollama_client)
Note, you can have some models from one backend and some from another. For example, you could have Claude 3.5 Sonnet as a coding expert and a local model for creativity. (Claude runs on the OpenAI client). Next, let's create the MAR and add some entities.
mar = MAR(model) # This sets the default model.
logic_expert = mar.Entity(
"Logic Expert",
"an expert in logic and reasoning", # lowercase first letter and no end punctuation. See the system prompt to understand why.
)
math_expert = mar.Entity(
"Math Expert",
"an expert in math and solving problems",
)
In practice, you will likely want to use different models for different entities to play to their strengths. Now, make sure to add a user entity.
user = mar.Entity(
"User",
"the one who gives problems and instructions",
"",
is_user=True,
pin_to_all_models=True, # all messages sent by this user will be pinned for all models to see.
)
By setting is_user=True
, whenever a message is sent to the user, you will be prompted to respond.
Now let's give them a system prompt. Make sure to tell them who is on their team and who they are. If you don't do this, it won't work. I have found the following system prompt to work the best.
for entity in mar.entities:
entity.message_stack.append(
Message(
system,
entity,
f"This is the messaging application. Your team includes: {'\n'.join([f'{e.id}: {e.introduction[0].upper()+e.introduction[1:]}.' for e in mar.entities if e != entity])}. You may address messages to any of them and receive messages from any of them. You may not send messages to anyone outside of your team. Your messages are private; only the sender and receiver can see them. Thus, you will need to share information with your teammates. There can only be one recipient per message, the messaging application does not support sending messages to multiple recipients at once. You are {entity.id}, {entity.introduction}. {entity.personal_prompt + " " if entity.personal_prompt else ''}Messages sent by you are started with To: and messages sent to you are started with From:.",
)
)
And finally start the chat by sending a message.
mar.start(logic_expert.send(input("You: "), user, print_all_messages=True))
By setting print_all_messages
to True
, it allows us to see all the messages sent. Otherwise, we would only see the messages sent to the user.
See simple_example.py
for the full code.
API Reference
Client
Client base class from which OpenAIClient
and OllamaClient
inherit.
async Client.get_chat_completion(self, messages: list[MessageDict], model_id: str, options={}) -> str
Gets a chat completion from the client.
OpenAIClient(Client)
OpenAIClient.__init__(self, base_url: Optional[str] = None, api_key: Optional[str] = None, **kwargs)
Initializes the OpenAI client. kwargs are passed to openai.OpenAI.__init__
.
async OpenAIClient.get_chat_completion(self, messages, model_id: str = "gpt-4o-mini", options={}) -> str
Gets a chat completion from the client. Default model is gpt-4o-mini
.
OpenAIClient.openai
The openai.OpenAI
instance.
OllamaClient(Client)
OllamaClient.__init__(self)
Initializes the Ollama client.
async OllamaClient.get_chat_completion(self, messages, model_id: str = "gpt-4o-mini", options={}) -> str
Model
Model.__init__(self, id: str, client: Client)
Initializes the model.
async Model.generate(self, messages: list[Message], options={})
Generates a response from the model.
Model.id
The model ID.
Model.client
The model client, a Client
object.
EntityName
An entity name.
EntityName.__init__(self, id: str, pin_to_all_models: bool = False)
Initializes the entity name.
EntityName.id
The name of the entity
EntityName.pin_to_all_models
If true, all messages made by this entity will be given to all models, not just the recipient.
System(EntityName)
The system
entity name is a instance of this class and is used for system prompts.
system.id
The system name, always equal to "system"
.
Mar
The MAR
class.
MAR.__init__(self, global_default_model: Optional[Model] = None)
Initializes the MAR. The global default model is used for all entities in this MAR that don't have a model assigned.
Mar.Entity(self, id: str, introduction: str, personal_prompt: str = "", model: Optional[Model] = None, temperature: float = 0.5, is_user: bool = False, pin_to_all_models: bool = False,)
Creates an entity with the given arguments.
id
: The ID/Name of the entity.
introduction
: The introduction of the entity. This is generally a single sentence with no end punctuation or capitalization. See the example system prompt for why.
model
: The model to be used in generation. If not specified, the MAR's global default model is used.
temperature
: The temperature to be used in generation. Defaults to 0.5.
options
: A list of other options to be used. These are client-specific.
is_user
: If true, the user will be prompted to respond via stdin instead of generating with the model.
pin_to_all_models
: If true, all messages this model sends will be pinned to the context for all other models. But only the model the message was sent to will get a chance to respond.
MAR.start(self, func)
Starts the MAR. func
is meant to be a Entity.send()
method.
MAR.entities
The list of entities in this MAR.
MAR.global_default_model
The global default model for this MAR.
Entity(EntityName)
A class derived from EntityName
that represents an entity and includes methods for generating responses and sending messages.
Entity.__init__(self, mar: MAR, id: str, introduction: str, personal_prompt: str = "", model: Optional[Model] = None, temperature: float = 0.5, options: dict = {}, is_user: bool = False, pin_to_all_models: bool = False)
Initializes the entity. Please use MAR.Entity()
instead. See reference there for information on parameters.
Entity.generate(self, stream: bool = False)
Generates a response from the entity.
Streaming is not supported, but the parameter is there. If set to true, you will get a NotImplementedError
.
Entity.send(self, message: Message | str | None = None, sender: Optional[EntityName] = None, print_all_messages: bool = False)
Sends a message to the entity.
message
: The message to send. May be a Message
object (which includes information such as sender or recipient), or a string. If it is a string, the sender
parameter is required.
sender
: The sender of the message. This is only used if message
is a string.
print_all_messages
: If true, all messages sent in this and subsequent generations will be printed. Defaults to false. Useful if you want to see what they are talking about behind the scenes.
Entity.mar
The MAR that this entity belongs to.
Entity.model
The model that this entity uses.
Entity.introduction
A short, single sentence introduction of this entity. It should have no ending punctuation or starting capitalization.
Entity.personal_prompt
A personal prompt for this entity. Tell the entity how to act and respond.
Entity.temperature
The temperature that the entity uses in generation.
Entity.options
The options for generation. This is model and client-specific.
Entity.is_user
If true, the you will be prompted to respond via stdin rather than having the model generate a response.
Entity.pin_to_all_models
If true, all messages this model sends will be pinned to the context for all other models. But only the model the message was sent to will get a chance to respond.
Entity.id
The ID/Name of the entity.
Entity.message_stack
The message stack of the entity.
Message
Message.__init__(self, sender: EntityName, recipient: EntityName, content: str)
Initializes the message.
Message.format(self, format_for: Optional[EntityName] = None)
Formats the message into dictionary form to be used as context for the format_for
entity.
Message.clone(self, sender: Optional[EntityName] = None, recipient: Optional[EntityName] = None, content: Optional[str] = None)
Clones the message with the applied differences.
Message.sender
The sender of the message. An EntityName
object.
Message.recipient
The recipient of the message. An EntityName
object.
Message.content
The content of the message. A string
get_element(lst: list, index: int, default: Any = None)
Returns the element at the given index in the list. If the index is out of range, returns the default value.
extract_name_and_content(message: str)
Extracts the name and content from the generated message.
TODO
Features to add
-
TODO: add tool support
-
TODO: add streaming support
Backends to add
- MLX-ENGINE (https://github.com/lmstudio-ai/mlx-engine/)
- Transformers (https://github.com/huggingface/transformers/)
- CoreML (https://github.com/apple/coremltools/)
Hard ones to add
-
TODO: add support for multi-recipient messages
-
TODO: add support for multi-message responses
NOTE: These will be VERY difficult to implement because every time an entity receives a message, it tries to reply. If you send a message to many entities, they will all try to reply.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mar_ps-0.1.0.tar.gz
.
File metadata
- Download URL: mar_ps-0.1.0.tar.gz
- Upload date:
- Size: 19.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.13.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e7fea12ca15cc77469d17e416fe27d3a1aee8006b07c24c7830258a1e79f22c |
|
MD5 | 63ee8a49553fdc90754500870eb359a6 |
|
BLAKE2b-256 | c70c12c39328bf6c7807971da47b8a78c462de5f75332453c2aa128861ed41f0 |
File details
Details for the file mar_ps-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: mar_ps-0.1.0-py3-none-any.whl
- Upload date:
- Size: 19.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.13.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1d196ab684e654cea6e8e6493ab753a52bc7d7903e2ea8e1a622a36d9006e83 |
|
MD5 | 88268ffdd6cb43b49eb0a8930289e9ab |
|
BLAKE2b-256 | 53522c6944e8fde78b6f9538039bc9e3f7a2723ac79070ba55e6b55519976c79 |