Skip to main content

Configuring Metabase from Python

Project description

Mara Metabase

Build Status PyPI - License PyPI version Slack Status

Automating the setup and configuration of Metabase instances. Comes with

  • Functions for adding users, databases & settings

  • Syncing of field descriptions and metrics defined with Mara Schema to Metabase

  • syncing of users and permissions to Metabase

  • A Makefile for running Metabase locally

 

Installation

To use the library directly, use pip:

pip install mara-metabase

or

pip install -e git+https://github.com/mara/mara-metabase.git

For an example of an integration into a flask application, have a look at the mara example project 1.

 

Running Metabase

From within a project, include [https://github.com/mara/mara-metabase/tree/master/.scripts/metabase.mk] in your project Makefile (as for example in https://github.com/mara/mara-example-project-1/blob/master/Makefile).

Running make setup-metabase will download a Metabase jar file, run database migrations, add an admin user & create a database connection to the data warehouse. Then running make run-metabase will start Metabase on port 3000:

Saiku

You can log in with the default username admin@my-company.com and the password 123abc (configurable via mara_metabase/config.py, please change in production).

For running Metabase in production, please have a look at https://www.metabase.com/docs/latest/operations-guide/installing-metabase.html.

 

Features

Programatically setting up Metabase

The file mara_metabase/setup.py contains functions for configuring a Metabase instance by directly writing to its metadata database (rather than manually configuring an instance through the UI). These functions are particularly useful when multiple Metabase instances are maintained (e.g. one for each testing / staging environment).

There is a a flask cli command for running the setup function: flask mara_metabase.setup.

 

Metadata sync

If you have a data warehouse schema defined in Mara Schema, then you can automatically sync field descriptions and metric definitions with the update_metadata function in mara_metabase/metadata.py.

Here's an example of an automatically synced definition for the metric average order value:

Metabae metadata sync

This function assumes that all reporting tables were created using the sql-generation features of Mara Schema.

The schema sync can be triggered manually with flask mara_metabase.update-metadata.

Have a look at https://github.com/mara/mara-example-project-1/blob/master/app/pipelines/update_frontends/init.py for how to integrate schema sync into a data pipeline.

 

Syncing of users, groups & permissions from Mara ACL

Once you add the Saiku ACL resource in mara_metabase/views.py to your project, you can control easily control which users can query which data sets:

Metabase ACL

All users in Mara ACL will be synced to Metabase together with their respective groups. Permissions in Metabase can be given for all or for individual data sets.

In this example, users from the "Management" group can query all data sets, and users from "Marketing" only "Customers" and "Leads" (with the exception of Thomas who can also query "Order items" and "Sellers").

This is the same data in the Metabase admin UI:

Metabase permissions

 

The easiest way to try out Mara Metabase is to run the mara example project 1.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mara-metabase-1.0.1.tar.gz (11.3 kB view details)

Uploaded Source

File details

Details for the file mara-metabase-1.0.1.tar.gz.

File metadata

  • Download URL: mara-metabase-1.0.1.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for mara-metabase-1.0.1.tar.gz
Algorithm Hash digest
SHA256 79697a40f3e56c9fc64f506324784e18b494dbae5f3378150610ba605c04d871
MD5 ee83d3f62a908444f3ac8ddd7874f446
BLAKE2b-256 f8ff505c26202d4d6711f4920b0520a49ab536c9ee0b1e1f6ecb0dd5f98177c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page