Python library to Integrate AI-powered features into your applications
Project description
Marie-AI
Integrate AI-powered document pipeline into your applications
Documentation
See the MarieAI docs.
Installation
You don't need this source code unless you want to modify the package. If you just want to use the package, just run:
pip install --upgrade marieai
Install from source with:
pip install -e .
Build docker container:
DOCKER_BUILDKIT=1 docker build . --build-arg PIP_TAG="standard" -f ./Dockerfiles/gpu.Dockerfile -t marieai/marie:3.0-cuda
Command-line interface
This library additionally provides an marie
command-line utility which makes it easy to interact with the API
from your terminal. Run marie -h
for usage.
Example code
Examples of how to use this library to accomplish various tasks can be found in the MarieAI documentation. It contains code examples for:
- Document cleanup
- Optical character recognition (OCR)
- Document Classification
- Document Splitter
- Named Entity Recognition
- Form detection
- And more
Run with default entrypoint
docker run --rm -it marieai/marie:3.0.19-cuda
Run the server with custom entrypoint
docker run --rm -it --entrypoint /bin/bash marieai/marie:3.0.19-cuda
Telemetry
TODO :MOVE TO DOCS
S3 Cloud Storage
docker compose -f docker-compose.s3.yml --project-directory . up --build --remove-orphans
CrossFTP
Configure AWS CLI Credentials.
vi ~/.aws/credentials
[marie] # this should be in the file
aws_access_key_id=your_access_key_id
aws_secret_access_key=your_secret_access_key
Pull the Docker image.
docker pull zenko/cloudserver
Create and start the container.
docker run --rm -it --name marie-s3-server -p 8000:8000 \
-e SCALITY_ACCESS_KEY_ID=MARIEACCESSKEY \
-e SCALITY_SECRET_ACCESS_KEY=MARIESECRETACCESSKEY \
-e S3DATA=multiple \
-e S3BACKEND=mem zenko/cloudserver
SCALITY_ACCESS_KEY_ID : Your AWS ACCESS KEY
SCALITY_SECRET_ACCESS_KEY: Your AWS SECRET ACCESS KEY
S3BACKEND: Currently using memory storage
Verify Installation.
aws s3 mb s3://mybucket --profile marie --endpoint-url http://localhost:8000 --region us-west-2
aws s3 ls --profile marie --endpoint-url http://localhost:8000
aws s3 cp some_file.txt s3://mybucket --profile marie --endpoint-url http://localhost:8000
aws s3 --profile marie --endpoint-url=http://127.0.0.1:8000 ls --recursive s3://
Production setup
Configuration for the S3 server will be stored in the following files: https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file marie-ai-3.0.29.tar.gz
.
File metadata
- Download URL: marie-ai-3.0.29.tar.gz
- Upload date:
- Size: 27.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46835b45213bfbbef1fb171fb4319f077ba9974c32cd6999a54e80d14a5b8ec8 |
|
MD5 | 343db17d380f91f98265c1155528ac66 |
|
BLAKE2b-256 | 8a205e01727311e83676938f1692c67605080fdc22e67588812f646516d1c1d2 |