Skip to main content

Marine: Multi-task learning based on Japanese accent estimation

Project description

MARINE : Multi-task leaRnIng-based JapaNese accent Estimation

PyPI Python package License

marine is a tool kit for building the Japanese accent estimation model proposed in our paper.

For academic use, please cite the following paper (IEEE Xplore).

@inproceedings{park22b_interspeech,
  author={Byeongseon Park and Ryuichi Yamamoto and Kentaro Tachibana},
  title={{A Unified Accent Estimation Method Based on Multi-Task Learning for Japanese Text-to-Speech}},
  year=2022,
  booktitle={Proc. Interspeech 2022},
  pages={1931--1935},
  doi={10.21437/Interspeech.2022-334}
}

Notice

The model included in this package is trained using JSUT corpus, which is not the same as the dataset in our paper. Therefore, the model's performance is also not equal to the performance introduced in our paper.

Get started

Install

$ pip install marine

For develop

$ pip install -e ".[dev]"

Quick demo

In [1]: from marine.predict import Predictor

In [2]: nodes = [
   ...:     {
   ...:         "surface": "こんにちは",
   ...:         "pos": "感動詞:*:*:*",
   ...:         "pron": "コンニチワ",
   ...:         "c_type": "*",
   ...:         "c_form": "*",
   ...:         "accent_type": 0,
   ...:         "accent_con_type": "-1",
   ...:         "chain_flag": -1
   ...:     }
   ...: ]

In [3]: predictor = Predictor()

In [4]: predictor.predict([nodes])
Out[4]:
{'mora': [['コ', 'ン', 'ニ', 'チ', 'ワ']],
 'intonation_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_status': [[0, 0, 0, 0, 0]]}

In [5]: predictor.predict([nodes], accent_represent_mode="high_low")
Out[5]:
{'mora': [['コ', 'ン', 'ニ', 'チ', 'ワ']],
 'intonation_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_status': [[0, 1, 1, 1, 1]]}

Build model your self

Coming soon

LICENSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

marine-0.0.6.tar.gz (65.6 kB view details)

Uploaded Source

File details

Details for the file marine-0.0.6.tar.gz.

File metadata

  • Download URL: marine-0.0.6.tar.gz
  • Upload date:
  • Size: 65.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for marine-0.0.6.tar.gz
Algorithm Hash digest
SHA256 d5d7990364be80653294db04be7e7410d922aec9bafc375e0e9354cf94a00bee
MD5 69b8dd1e0c9a91ddfbd79b92b586d9d7
BLAKE2b-256 8854e91c7c6ea8becc422c82b6aed54d3d4eb355f8dd4df81895a8f606a4a013

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page