Skip to main content

Marine: Multi-task learning based on Japanese accent estimation (Also supports Windows and Python 3.12)

Project description

marine-plus

PyPI Python package License

marine-plus は、主に Windows 対応や新しい Python バージョンのサポートなどコードのメンテナンスを目的とした、marine の派生ライブラリです。

Installation

下記コマンドを実行して、ライブラリをインストールできます。

pip install marine-plus

下記のドキュメントは、marine 本家のドキュメントを改変なしでそのまま引き継いでいます。
これらのドキュメントの内容が marine-plus にも通用するかは保証されません。


MARINE : Multi-task leaRnIng-based JapaNese accent Estimation

PyPI Python package License DOI

marine is a tool kit for building the Japanese accent estimation model proposed in our paper (demo).

For academic use, please cite the following paper (ISCA archive).

@inproceedings{park22b_interspeech,
  author={Byeongseon Park and Ryuichi Yamamoto and Kentaro Tachibana},
  title={{A Unified Accent Estimation Method Based on Multi-Task Learning for Japanese Text-to-Speech}},
  year=2022,
  booktitle={Proc. Interspeech 2022},
  pages={1931--1935},
  doi={10.21437/Interspeech.2022-334}
}

Notice

The model included in this package is trained using JSUT corpus, which is not the same as the dataset in our paper. Therefore, the model's performance is also not equal to the performance introduced in our paper.

Get started

Installation

$ pip install marine

For development

$ pip install -e ".[dev]"

Quick demo

In [1]: from marine.predict import Predictor

In [2]: nodes = [{"surface": "こんにちは", "pos": "感動詞:*:*:*", "pron": "コンニチワ", "c_type": "*", "c_form": "*", "accent_type": 0, "accent_con_type": "-1", "chain_flag": -1}]

In [3]: predictor = Predictor()

In [4]: predictor.predict([nodes])
Out[4]:
{'mora': [['コ', 'ン', 'ニ', 'チ', 'ワ']],
 'intonation_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_status': [[0, 0, 0, 0, 0]]}

In [5]: predictor.predict([nodes], accent_represent_mode="high_low")
Out[5]:
{'mora': [['コ', 'ン', 'ニ', 'チ', 'ワ']],
 'intonation_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_phrase_boundary': [[0, 0, 0, 0, 0]],
 'accent_status': [[0, 1, 1, 1, 1]]}

Build model yourself

Coming soon...

LICENSE

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

marine_plus-0.0.6.post3.tar.gz (70.4 kB view details)

Uploaded Source

Built Distribution

marine_plus-0.0.6.post3-py3-none-any.whl (90.0 kB view details)

Uploaded Python 3

File details

Details for the file marine_plus-0.0.6.post3.tar.gz.

File metadata

  • Download URL: marine_plus-0.0.6.post3.tar.gz
  • Upload date:
  • Size: 70.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for marine_plus-0.0.6.post3.tar.gz
Algorithm Hash digest
SHA256 adfef8815165b77a1a330c266220538bc944fe2380077ff5795f136d1ecb5526
MD5 ad6fce0ef2578d8125aad36b57886613
BLAKE2b-256 1cd1ab82122f93df04e90dbd5c6de729798a90dc518aaf8ffabb1c1d66f7e268

See more details on using hashes here.

File details

Details for the file marine_plus-0.0.6.post3-py3-none-any.whl.

File metadata

File hashes

Hashes for marine_plus-0.0.6.post3-py3-none-any.whl
Algorithm Hash digest
SHA256 d67c92adb7c6785de49df3ef9f4c55b7be7f3f20d6aa83159e48cafe8dee7bc4
MD5 6846a09aa137fdbbe81d1a7094d5b57c
BLAKE2b-256 bd95adfb6b918280aabe9974186b7f1be517fb0b6ab8af4ce558f7fa6b1db6ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page