Skip to main content

Generating Mario Levels with GPT2. Code for the paper: 'MarioGPT: Open-Ended Text2Level Generation through Large Language Models', https://arxiv.org/abs/2302.05981

Project description

MarioGPT: Open-Ended Text2Level Generation through Large Language Models

Paper PyPi version HuggingFace Spaces Open In Colab

Playing Generated Level Generated Level
alt text alt text

How does it work?

Architecture Example Prompt Generations
alt text alt text

MarioGPT is a finetuned GPT2 model (specifically, distilgpt2), that is trained on a subset Super Mario Bros and Super Mario Bros: The Lost Levels levels, provided by The Video Game Level Corpus. MarioGPT is able to generate levels, guided by a simple text prompt. This generation is not perfect, but we believe this is a great first step more controllable and diverse level / environment generation. Forward generation:

alt text

Requirements

  • python3.8+

Installation

from pypi

pip install mario-gpt

or from source

git clone git@github.com:shyamsn97/mario-gpt.git
python setup.py install

Generating Levels

Since our models are built off of the amazing transformers library, we host our model in https://huggingface.co/shyamsn97/Mario-GPT2-700-context-length

This code snippet is the minimal code you need to generate a mario level!

from mario_gpt import MarioLM, SampleOutput

# pretrained_model = shyamsn97/Mario-GPT2-700-context-length

mario_lm = MarioLM()

# use cuda to speed stuff up
# import torch
# device = torch.device('cuda')
# mario_lm = mario_lm.to(device)

prompts = ["many pipes, many enemies, some blocks, high elevation"]

# generate level of size 1400, pump temperature up to ~2.4 for more stochastic but playable levels
generated_level = mario_lm.sample(
    prompts=prompts,
    num_steps=1400,
    temperature=2.0,
    use_tqdm=True
)

# show string list
generated_level.level

# show PIL image
generated_level.img

# save image
generated_level.img.save("generated_level.png")

# save text level to file
generated_level.save("generated_level.txt")

# play in interactive
generated_level.play()

# run Astar agent
generated_level.run_astar()

# Continue generation
generated_level_continued = mario_lm.sample(
    seed=generated_level,
    prompts=prompts,
    num_steps=1400,
    temperature=2.0,
    use_tqdm=True
)

# load from text file
loaded_level = SampleOutput.load("generated_level.txt")

# play from loaded (should be the same level that we generated)
loaded_level.play()
...
See notebook for a more in depth tutorial to generate levels

Interacting with Levels

Right now there are two ways to interact with generated levels:

  1. Huggingface demo -- Thanks to the amazing work by multimodalart, you can generate and play levels interactively in the browser! In addition, gpus are provided so you don't have to own one yourself.
  2. Using the play and astar methods. These require you to have java installed on your computer (Java 8+ tested). For interactive, use the play() method and for astar use the run_astar method. Example:
from mario_gpt import MarioLM

mario_lm = MarioLM()

prompts = ["many pipes, many enemies, some blocks, high elevation"]

generated_level = mario_lm.sample(
    prompts=prompts,
    num_steps=1400,
    temperature=2.0,
    use_tqdm=True
)

# play in interactive
generated_level.play()

# run Astar agent
generated_level.run_astar()

Future Plans

Here's a list of some stuff that will be added to the codebase!

  • Basic inference code
  • Add MarioBert Model
  • Add Interactive simulator
  • Inpainting functionality from paper
  • Open-ended level generation code
  • Training code from paper
  • Different generation methods (eg. constrained beam search, etc.)

Authors

Shyam Sudhakaran shyamsnair@protonmail.com, https://github.com/shyamsn97

Miguel González-Duque migd@itu.dk, https://github.com/miguelgondu

Claire Glanois clgl@itu.dk, https://github.com/claireaoi

Matthias Freiberger matfr@itu.dk, https://github.com/matfrei

Elias Najarro enaj@itu.dk, https://github.com/enajx

Sebastian Risi sebr@itu.dk, https://github.com/sebastianrisi

Citation

If you use the code for academic or commecial use, please cite the associated paper:

@misc{https://doi.org/10.48550/arxiv.2302.05981,
  doi = {10.48550/ARXIV.2302.05981},
  
  url = {https://arxiv.org/abs/2302.05981},
  
  author = {Sudhakaran, Shyam and González-Duque, Miguel and Glanois, Claire and Freiberger, Matthias and Najarro, Elias and Risi, Sebastian},
  
  keywords = {Artificial Intelligence (cs.AI), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {MarioGPT: Open-Ended Text2Level Generation through Large Language Models},
  
  publisher = {arXiv},
  
  year = {2023},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mario-gpt-0.1.3.tar.gz (970.1 kB view details)

Uploaded Source

Built Distributions

mario_gpt-0.1.3-py3.9.egg (1.0 MB view details)

Uploaded Source

mario_gpt-0.1.3-py3-none-any.whl (984.5 kB view details)

Uploaded Python 3

File details

Details for the file mario-gpt-0.1.3.tar.gz.

File metadata

  • Download URL: mario-gpt-0.1.3.tar.gz
  • Upload date:
  • Size: 970.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for mario-gpt-0.1.3.tar.gz
Algorithm Hash digest
SHA256 29d91fb3ea7d9b39ea4202cacd012a88454e17047e91943dc6b4fcf6df937195
MD5 ffed1a44f1f834a7421101314153b6e1
BLAKE2b-256 38cedfc35103aafc63060ace25d5afee4fd2628f2fab6310ddb2c55f57df7e5a

See more details on using hashes here.

File details

Details for the file mario_gpt-0.1.3-py3.9.egg.

File metadata

  • Download URL: mario_gpt-0.1.3-py3.9.egg
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for mario_gpt-0.1.3-py3.9.egg
Algorithm Hash digest
SHA256 1d4c6c768d9e1cc8e1d1a5d3e015c4b81471e01d47a6b9bbf935dd243b1f9ee0
MD5 1abe38dad794e6b9bb89d81a44783461
BLAKE2b-256 1e58075faed419ed75181127d1d68780ee5e0cb80ad9edfac6cc49757c5931f0

See more details on using hashes here.

File details

Details for the file mario_gpt-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: mario_gpt-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 984.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for mario_gpt-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0d16e4f878e37c186489902e75c51949db606196d718be7ead0ff5c15d828f6f
MD5 ea65a941a446a7485d70e2e4f768029f
BLAKE2b-256 b897d76dbad8c0316ee5234a97607dd0368e9da46c82b5dd7ce1de42fd3326f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page