Skip to main content

Marquez integration with Airflow

Project description

marquez-airflow

CircleCI codecov status Gitter version license

A library that integrates Airflow DAGs with Marquez for automatic metadata collection.

Status

This library is under active development at Datakin.

Requirements

Installation

$ pip3 install marquez-airflow

To install from source, run:

$ python3 setup.py install

Settings

Pointing to your Marquez service

marquez-airflow needs to know where to talk to the Marquez server API. You can set these using environment variables to be read by your Airflow service.

You will also need to set the namespace if you are using something other than the default namespace.

MARQUEZ_URL=http://my_hosted_marquez.example.com:5000
MARQUEZ_NAMESPACE=my_special_ns

NOTE: In the latest version of marquez-python, the constructor requires a url parameter for the host and port. Presumably, the logic to read the env vars will move into this library

Extractors : Sending the correct data from your DAGs

If you do nothing, Marquez will receive the Job and the Run from your DAGs, but sources and datasets will not be sent.

marquez-airflow allows you to do more than that by building "Extractors". Extractors are in the process of changing right now, but they basically take a task and extract:

  1. Name : The name of the task
  2. Location : Location of the code for the task
  3. Inputs : List of input datasets
  4. Outputs : List of output datasets
  5. Context : The Airflow context for the task

It's important to understand the inputs and outputs are lists and relate directly to the Dataset object in Marquez. Datasets also include a source which relates directly to the Source object in Marquez.

A PostgresExtractor is currently in progress. When that's merged, it will represent a good example of how to write custom extractors

Usage

from datetime import datetime
from marquez_airflow import DAG
from airflow.operators.postgres_operator import PostgresOperator
from airflow.utils.dates import days_ago

default_args = {
    'owner': 'datascience',
    'depends_on_past': False,
    'start_date': days_ago(1),
    'email_on_failure': False,
    'email_on_retry': False,
    'email': ['datascience@datakin.com']
}

dag = DAG(
    'orders_popular_day_of_week',
    schedule_interval='@weekly',
    default_args=default_args,
    description='Determines the popular day of week orders are placed.'
)

t1 = PostgresOperator(
    task_id='if_not_exists',
    postgres_conn_id='food_delivery_db',
    sql='''
    CREATE TABLE IF NOT EXISTS popular_orders_day_of_week (
      order_day_of_week VARCHAR(64) NOT NULL,
      order_placed_on   TIMESTAMP NOT NULL,
      orders_placed     INTEGER NOT NULL
    );''',
    dag=dag
)

t2 = PostgresOperator(
    task_id='insert',
    postgres_conn_id='food_delivery_db',
    sql='''
    INSERT INTO popular_orders_day_of_week (order_day_of_week, order_placed_on, orders_placed)
      SELECT EXTRACT(ISODOW FROM order_placed_on) AS order_day_of_week,
             order_placed_on,
             COUNT(*) AS orders_placed
        FROM top_delivery_times
       GROUP BY order_placed_on;
    ''',
    dag=dag
)

t1 >> t2

Contributing

See CONTRIBUTING.md for more details about how to contribute.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

marquez-airflow-0.2.2.tar.gz (11.2 kB view details)

Uploaded Source

File details

Details for the file marquez-airflow-0.2.2.tar.gz.

File metadata

  • Download URL: marquez-airflow-0.2.2.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.1 requests-toolbelt/0.8.0 tqdm/4.48.2 CPython/3.6.12

File hashes

Hashes for marquez-airflow-0.2.2.tar.gz
Algorithm Hash digest
SHA256 8a0e5e9cc12366aa1cdf47a8c1e99d67ebe3dd7e13220917e3c5104e70cb6a94
MD5 8cbf847625b4d520f2465ad77c1c7bcc
BLAKE2b-256 61e18efd7460973b07a8545f6ae32412bc328e083986ca8d35ca3c272f464fee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page