Framework Code for the RecSys 2020 entitled 'MARS-Gym: A Gym framework to model, train, and evaluate recommendationsystems for marketplaces'.
Project description
MARS-Gym (MArketplace Recommender Systems Gym), a benchmark framework for modeling, training, and evaluating RL-based recommender systems for marketplaces.
Three main components composes the framework:
Data Engineering Module: A highly customizable module where the consumer can ingest and process a massive amount of data for learning using spark jobs.
Simulation Module: Holds an extensible module built on top of PyTorch to design learning architectures. It also possesses an OpenAI’s Gym environment that ingests the processed dataset to run a multi-agent system that simulates the targeted marketplace.
Evaluation Module: Provides a set of distinct perspectives on the agent’s performance. It presents traditional recommendation metrics, off-policy evaluation metrics, and fairness indicators. This component is powered by a user-friendly interface to facilitate the analysis and comparison betweenagents
Dependencies and Requirements
python=3.6.7
pandas=0.25.1
matplotlib=2.2.2
scipy=1.3.1
numpy=1.17.0
seaborn=0.8.1
scikit-learn=0.21.2
pytorch=1.2.0
tensorboardx=1.6
luigi=2.7.5
tqdm=4.33
requests=2.18.4
jupyterlab=1.0.2
ipywidgets=7.5.1
diskcache=3.0.6
pyspark=2.4.3
psutil=5.2.2
category_encoders
plotly=4.4.1
imbalanced-learn==0.4.3
torchbearer==0.5.1
pytorch-nlp==0.4.1
unidecode==1.1.1
streamlit==0.52.2
gym==0.15.4
Free software: MIT license
Installation
pip install mars-gym
You can also install the in-development version with:
pip install https://github.com/deeplearningbrasil/mars-gym/archive/master.zip
Documentation
Development
To run the all tests run:
tox
Note, to combine the coverage data from all the tox environments run:
Windows |
set PYTEST_ADDOPTS=--cov-append tox |
---|---|
Other |
PYTEST_ADDOPTS=--cov-append tox |
Usage
Simulate Example
mars-gym run interaction --project PROJECT \
--n-factors N_FACTORS --learning-rate LR --optimizer OPTIMIZER \
--epochs EPOCHS --obs-batch-size OBS_BATCH \
--batch-size BATCH_SIZE --num-episodes NUM_EP \
--bandit-policy BANDIT --bandit-policy-params BANDIT_PARAMS
Evaluate Example
mars-gym evaluate iteraction \
--model-task-id MODEL_TASK_ID --fairness-columns "[]" \
--direct-estimator-class DE_CLASS
Evaluation Module
mars-gym viz
Cite
Please cite the associated paper for this work if you use this code:
@misc{santana2020marsgym, title={MARS-Gym: A Gym framework to model, train, and evaluate Recommender Systems for Marketplaces}, author={Marlesson R. O. Santana and Luckeciano C. Melo and Fernando H. F. Camargo and Bruno Brandão and Anderson Soares and Renan M. Oliveira and Sandor Caetano}, year={2020}, eprint={2010.07035}, archivePrefix={arXiv}, primaryClass={cs.IR} }
Changelog
0.0.1 (2020-06-27)
First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mars-gym-0.1.0.tar.gz
.
File metadata
- Download URL: mars-gym-0.1.0.tar.gz
- Upload date:
- Size: 12.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e563fcc00ccba29b596d9a52c0ab34c12dfba125f0e31f167fd3ba9f2632f1c |
|
MD5 | 01a6157958f77ee7eed6b091817a9441 |
|
BLAKE2b-256 | c85b5a47033e7967ef06fdc97e919aeccf45af24c98cd6cd25d1be2c6abebe15 |
File details
Details for the file mars_gym-0.1.0-py2.py3-none-any.whl
.
File metadata
- Download URL: mars_gym-0.1.0-py2.py3-none-any.whl
- Upload date:
- Size: 73.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f99e8a2951f9b938e14ae5689854f4eaa332c4c9d4205c7f85d4a752111fb60 |
|
MD5 | e32bfab1a77a3fd1781d9dad4f1e6338 |
|
BLAKE2b-256 | 54e429cd376fda2a888704b065cf8fe6748e191dffad7de7e29e0045f216cbd4 |