Fast serialization framework on top of dataclasses
Project description
mashumaro (マシュマロ)
mashumaro is a fast and well tested serialization framework on top of dataclasses.
When using dataclasses, you often need to dump and load objects according to the described scheme. This framework not only adds this ability to serialize in different formats, but also makes serialization rapidly.
Table of contens
- Installation
- Supported serialization formats
- Supported field types
- Usage example
- How does it work?
- API
- User defined classes
Installation
Use pip to install:
$ pip install mashumaro
Supported serialization formats
This framework adds methods for dumping to and loading from the following formats:
- plain dict
- json
- yaml
- msgpack
Plain dict can be useful when you need to pass a dict object to a third-party library, such as a client for MongoDB.
Supported field types
There is support for generic types from the standard typing module:
- List
- Tuple
- Set
- FrozenSet
- Deque
- Dict
- Mapping
- MutableMapping
- ChainMap
- Sequence
for special primitives from the typing module:
- Optional
- Any
for enumerations based on classes from the standard enum module:
- Enum
- IntEnum
- Flag
- IntFlag
for common built-in types:
- int
- float
- bool
- str
- bytes
- bytearray
for built-in datetime oriented types:
- datetime
- date
- time
- timedelta
- timezone
for other less popular built-in types:
- uuid.UUID
- decimal.Decimal
- fractions.Fraction
for specific types like NoneType, nested dataclasses itself and even user defined classes.
Usage example
from enum import Enum
from typing import Set
from dataclasses import dataclass
from mashumaro import DataClassJSONMixin
class PetType(Enum):
CAT = 'CAT'
MOUSE = 'MOUSE'
@dataclass(unsafe_hash=True)
class Pet(DataClassJSONMixin):
name: str
age: int
pet_type: PetType
@dataclass
class Person(DataClassJSONMixin):
first_name: str
second_name: str
age: int
pets: Set[Pet]
tom = Pet(name='Tom', age=5, pet_type=PetType.CAT)
jerry = Pet(name='Jerry', age=3, pet_type=PetType.MOUSE)
john = Person(first_name='John', second_name='Smith', age=18, pets={tom, jerry})
dump = john.to_json()
person = Person.from_json(dump)
# person == john
Pet.from_json('{"name": "Tom", "age": 5, "pet_type": "CAT"}')
# Pet(name='Tom', age=5, pet_type=<PetType.CAT: 'CAT'>)
How does it work?
This framework works by taking the schema of the data and generating a specific parser and builder for exactly that schema. This is much faster than inspection of field types on every call of parsing or building at runtime.
API
Mashumaro provides a couple of mixins for each format.
DataClassDictMixin.to_dict(use_bytes: bool, use_enum: bool, use_datetime: bool)
Make a dictionary from dataclass object based on the dataclass schema provided. Options include:
use_bytes: False # False - convert bytes/bytearray objects to base64 encoded string, True - keep untouched
use_enum: False # False - convert enum objects to enum values, True - keep untouched
use_datetime: False # False - convert datetime oriented objects to ISO 8601 formatted string, True - keep untouched
DataClassDictMixin.from_dict(data: Mapping, use_bytes: bool, use_enum: bool, use_datetime: bool)
Make a new object from dict object based on the dataclass schema provided. Options include:
use_bytes: False # False - load bytes/bytearray objects from base64 encoded string, True - keep untouched
use_enum: False # False - load enum objects from enum values, True - keep untouched
use_datetime: False # False - load datetime oriented objects from ISO 8601 formatted string, True - keep untouched
DataClassJSONMixin.to_json(encoder: Optional[Encoder], dict_params: Optional[Mapping], **encoder_kwargs)
Make a JSON formatted string from dataclass object based on the dataclass schema provided. Options include:
encoder # function called for json encoding, defaults to json.dumps
dict_params # dictionary of parameter values passed underhood to `to_dict` function
encoder_kwargs # keyword arguments for encoder function
DataClassJSONMixin.from_json(data: Union[str, bytes, bytearray], decoder: Optional[Decoder], dict_params: Optional[Mapping], **decoder_kwargs)
Make a new object from JSON formatted string based on the dataclass schema provided. Options include:
decoder # function called for json decoding, defaults to json.loads
dict_params # dictionary of parameter values passed underhood to `from_dict` function
decoder_kwargs # keyword arguments for decoder function
DataClassMessagePackMixin.to_msgpack(encoder: Optional[Encoder], dict_params: Optional[Mapping], **encoder_kwargs)
Make a MessagePack formatted bytes object from dataclass object based on the dataclass schema provided. Options include:
encoder # function called for MessagePack encoding, defaults to msgpack.packb
dict_params # dictionary of parameter values passed underhood to `to_dict` function
encoder_kwargs # keyword arguments for encoder function
DataClassMessagePackMixin.from_msgpack(data: Union[str, bytes, bytearray], decoder: Optional[Decoder], dict_params: Optional[Mapping], **decoder_kwargs)
Make a new object from MessagePack formatted data based on the dataclass schema provided. Options include:
decoder # function called for MessagePack decoding, defaults to msgpack.unpackb
dict_params # dictionary of parameter values passed underhood to `from_dict` function
decoder_kwargs # keyword arguments for decoder function
DataClassYAMLMixin.to_yaml(encoder: Optional[Encoder], dict_params: Optional[Mapping], **encoder_kwargs)
Make an YAML formatted bytes object from dataclass object based on the dataclass schema provided. Options include:
encoder # function called for YAML encoding, defaults to yaml.dump
dict_params # dictionary of parameter values passed underhood to `to_dict` function
encoder_kwargs # keyword arguments for encoder function
DataClassYAMLMixin.from_yaml(data: Union[str, bytes], decoder: Optional[Decoder], dict_params: Optional[Mapping], **decoder_kwargs)
Make a new object from YAML formatted data based on the dataclass schema provided. Options include:
decoder # function called for YAML decoding, defaults to yaml.safe_load
dict_params # dictionary of parameter values passed underhood to `from_dict` function
decoder_kwargs # keyword arguments for decoder function
User defined classes
You can define and use custom classes with mashumaro. There are two options for customization. The first one is useful when you already have the separate custom class and you want to serialize instances of it with mashumaro. All what you need is to implement SerializableType interface:
from typing import Dict
from datetime import datetime
from dataclasses import dataclass
from mashumaro import DataClassDictMixin
from mashumaro.types import SerializableType
class DateTime(datetime, SerializableType):
def _serialize(self) -> Dict[str, int]:
return {
"year": self.year,
"month": self.month,
"day": self.day,
"hour": self.hour,
"minute": self.minute,
"second": self.second,
}
@classmethod
def _deserialize(cls, value: Dict[str, int]) -> 'DateTime':
return DateTime(
year=value['year'],
month=value['month'],
day=value['day'],
hour=value['hour'],
minute=value['minute'],
second=value['second'],
)
@dataclass
class Holiday(DataClassDictMixin):
when: DateTime = DateTime.now()
new_year = Holiday(when=DateTime(2019, 1, 1, 12))
dictionary = new_year.to_dict()
# {'x': {'year': 2019, 'month': 1, 'day': 1, 'hour': 0, 'minute': 0, 'second': 0}}
assert Holiday.from_dict(dictionary) == new_year
The second option is useful when you want to change the serialization behaviour for a class depending on some defined parameters. For this case you can create the special class implementing SerializationStrategy interface:
from datetime import datetime
from dataclasses import dataclass
from mashumaro import DataClassDictMixin
from mashumaro.types import SerializationStrategy
class FormattedDateTime(SerializationStrategy):
def __init__(self, fmt):
self.fmt = fmt
def _serialize(self, value: datetime) -> str:
return value.strftime(self.fmt)
def _deserialize(self, value: str) -> datetime:
return datetime.strptime(value, self.fmt)
@dataclass
class DateTimeFormats(DataClassDictMixin):
short: FormattedDateTime(fmt='%d%m%Y%H%M%S') = datetime.now()
verbose: FormattedDateTime(fmt='%A %B %d, %Y, %H:%M:%S') = datetime.now()
formats = DateTimeFormats(
short=datetime(2019, 1, 1, 12),
verbose=datetime(2019, 1, 1, 12),
)
dictionary = formats.to_dict()
# {'short': '01012019120000', 'verbose': 'Tuesday January 01, 2019, 12:00:00'}
assert DateTimeFormats.from_dict(dictionary) == formats
TODO
- write benchmarks
- add optional validation
- add Union support (try to match types on each call)
- write custom useful types such as URL, Email etc
- write documentation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mashumaro-1.9.tar.gz
.
File metadata
- Download URL: mashumaro-1.9.tar.gz
- Upload date:
- Size: 13.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99e066ba40892ef77b589c91220b68780ed6160f6be707f39a2e60b7b885387e |
|
MD5 | 1386cf8024293837875d4323536291fb |
|
BLAKE2b-256 | 5399bd7aff207c5cf247bd3ab65f2a052092f9e4610cc296bd0f0a62f7af254f |