Fast serialization framework on top of dataclasses
Project description
mashumaro (マシュマロ)
mashumaro is a fast and well tested serialization framework on top of dataclasses.
When using dataclasses, you often need to dump and load objects according to the described scheme. This framework not only adds this ability to serialize in different formats, but also makes serialization rapidly.
Table of contents
- Installation
- Supported serialization formats
- Supported field types
- Usage example
- How does it work?
- Benchmark
- API
- Customization
Installation
Use pip to install:
$ pip install mashumaro
Supported serialization formats
This framework adds methods for dumping to and loading from the following formats:
Plain dict can be useful when you need to pass a dict object to a third-party library, such as a client for MongoDB.
Supported field types
There is support for generic types from the standard typing module:
List
Tuple
Set
FrozenSet
Deque
Dict
OrderedDict
Mapping
MutableMapping
Counter
ChainMap
Sequence
for special primitives from the typing module:
Optional
Union
Any
for enumerations based on classes from the standard enum module:
Enum
IntEnum
Flag
IntFlag
for common built-in types:
int
float
bool
str
bytes
bytearray
for built-in datetime oriented types (see more details):
datetime
date
time
timedelta
timezone
for pathlike types:
PurePath
Path
PurePosixPath
PosixPath
PureWindowsPath
WindowsPath
os.PathLike
for other less popular built-in types:
uuid.UUID
decimal.Decimal
fractions.Fraction
ipaddress.IPv4Address
ipaddress.IPv6Address
ipaddress.IPv4Network
ipaddress.IPv6Network
ipaddress.IPv4Interface
ipaddress.IPv6Interface
for specific types like NoneType, nested dataclasses itself and even user defined classes.
Usage example
from enum import Enum
from typing import Set
from dataclasses import dataclass
from mashumaro import DataClassJSONMixin
class PetType(Enum):
CAT = 'CAT'
MOUSE = 'MOUSE'
@dataclass(unsafe_hash=True)
class Pet(DataClassJSONMixin):
name: str
age: int
pet_type: PetType
@dataclass
class Person(DataClassJSONMixin):
first_name: str
second_name: str
age: int
pets: Set[Pet]
tom = Pet(name='Tom', age=5, pet_type=PetType.CAT)
jerry = Pet(name='Jerry', age=3, pet_type=PetType.MOUSE)
john = Person(first_name='John', second_name='Smith', age=18, pets={tom, jerry})
dump = john.to_json()
person = Person.from_json(dump)
# person == john
Pet.from_json('{"name": "Tom", "age": 5, "pet_type": "CAT"}')
# Pet(name='Tom', age=5, pet_type=<PetType.CAT: 'CAT'>)
How does it work?
This framework works by taking the schema of the data and generating a specific parser and builder for exactly that schema. This is much faster than inspection of field types on every call of parsing or building at runtime.
Benchmark
- macOS 11.1 Big Sur
- Apple M1
- 16GB RAM
Load and dump sample data 1.000 times in 5 runs. The following figures show the best overall time in each case.
Framework | From dict | To dict | ||
---|---|---|---|---|
Time | Slowdown factor | Time | Slowdown factor | |
mashumaro | 0.04316 | 1x | 0.02751 | 1x |
cattrs | 0.06518 | 1.51x | 0.04856 | 1.77x |
pydantic | 0.23339 | 5.41x | 0.11464 | 4.17x |
marshmallow | 0.24699 | 5.72x | 0.09425 | 3.43x |
dataclasses | — | — | 0.22689 | 5.26x |
dacite | 0.91482 | 21.2x | — | — |
To run benchmark in your environment:
git clone git@github.com:Fatal1ty/mashumaro.git
cd mashumaro
python3 -m venv env && source env/bin/activate
pip install -e .
pip install -r requirements-dev.txt
python benchmark/run.py
API
Mashumaro provides a couple of mixins for each format.
DataClassDictMixin.to_dict(use_bytes: bool, use_enum: bool, use_datetime: bool)
Make a dictionary from dataclass object based on the dataclass schema provided. Options include:
use_bytes: False # False - convert bytes/bytearray objects to base64 encoded string, True - keep untouched
use_enum: False # False - convert enum objects to enum values, True - keep untouched
use_datetime: False # False - convert datetime oriented objects to ISO 8601 formatted string, True - keep untouched
DataClassDictMixin.from_dict(data: Mapping, use_bytes: bool, use_enum: bool, use_datetime: bool)
Make a new object from dict object based on the dataclass schema provided. Options include:
use_bytes: False # False - load bytes/bytearray objects from base64 encoded string, True - keep untouched
use_enum: False # False - load enum objects from enum values, True - keep untouched
use_datetime: False # False - load datetime oriented objects from ISO 8601 formatted string, True - keep untouched
DataClassJSONMixin.to_json(encoder: Optional[Encoder], dict_params: Optional[Mapping], **encoder_kwargs)
Make a JSON formatted string from dataclass object based on the dataclass schema provided. Options include:
encoder # function called for json encoding, defaults to json.dumps
dict_params # dictionary of parameter values passed underhood to `to_dict` function
encoder_kwargs # keyword arguments for encoder function
DataClassJSONMixin.from_json(data: Union[str, bytes, bytearray], decoder: Optional[Decoder], dict_params: Optional[Mapping], **decoder_kwargs)
Make a new object from JSON formatted string based on the dataclass schema provided. Options include:
decoder # function called for json decoding, defaults to json.loads
dict_params # dictionary of parameter values passed underhood to `from_dict` function
decoder_kwargs # keyword arguments for decoder function
DataClassMessagePackMixin.to_msgpack(encoder: Optional[Encoder], dict_params: Optional[Mapping], **encoder_kwargs)
Make a MessagePack formatted bytes object from dataclass object based on the dataclass schema provided. Options include:
encoder # function called for MessagePack encoding, defaults to msgpack.packb
dict_params # dictionary of parameter values passed underhood to `to_dict` function
encoder_kwargs # keyword arguments for encoder function
DataClassMessagePackMixin.from_msgpack(data: Union[str, bytes, bytearray], decoder: Optional[Decoder], dict_params: Optional[Mapping], **decoder_kwargs)
Make a new object from MessagePack formatted data based on the dataclass schema provided. Options include:
decoder # function called for MessagePack decoding, defaults to msgpack.unpackb
dict_params # dictionary of parameter values passed underhood to `from_dict` function
decoder_kwargs # keyword arguments for decoder function
DataClassYAMLMixin.to_yaml(encoder: Optional[Encoder], dict_params: Optional[Mapping], **encoder_kwargs)
Make an YAML formatted bytes object from dataclass object based on the dataclass schema provided. Options include:
encoder # function called for YAML encoding, defaults to yaml.dump
dict_params # dictionary of parameter values passed underhood to `to_dict` function
encoder_kwargs # keyword arguments for encoder function
DataClassYAMLMixin.from_yaml(data: Union[str, bytes], decoder: Optional[Decoder], dict_params: Optional[Mapping], **decoder_kwargs)
Make a new object from YAML formatted data based on the dataclass schema provided. Options include:
decoder # function called for YAML decoding, defaults to yaml.safe_load
dict_params # dictionary of parameter values passed underhood to `from_dict` function
decoder_kwargs # keyword arguments for decoder function
Customization
Serializable Interface
If you already have a separate custom class, and you want to serialize instances of it with mashumaro, you can achieve this by implementing SerializableType interface:
from typing import Dict
from datetime import datetime
from dataclasses import dataclass
from mashumaro import DataClassDictMixin
from mashumaro.types import SerializableType
class DateTime(datetime, SerializableType):
def _serialize(self) -> Dict[str, int]:
return {
"year": self.year,
"month": self.month,
"day": self.day,
"hour": self.hour,
"minute": self.minute,
"second": self.second,
}
@classmethod
def _deserialize(cls, value: Dict[str, int]) -> 'DateTime':
return DateTime(
year=value['year'],
month=value['month'],
day=value['day'],
hour=value['hour'],
minute=value['minute'],
second=value['second'],
)
@dataclass
class Holiday(DataClassDictMixin):
when: DateTime = DateTime.now()
new_year = Holiday(when=DateTime(2019, 1, 1, 12))
dictionary = new_year.to_dict()
# {'x': {'year': 2019, 'month': 1, 'day': 1, 'hour': 0, 'minute': 0, 'second': 0}}
assert Holiday.from_dict(dictionary) == new_year
Field options
In some cases creating a new class just for one little thing could be
excessive. Moreover, you may need to deal with third party classes that you are
not allowed to change. You can usedataclasses.field
function as a default field value to configure some serialization aspects
through its metadata
parameter. Next section describes all supported options
to use in metadata
mapping.
serialize
option
This option allows you to change the serialization method through
a value of type Callable[[Any], Any]
that could be any callable object like
a function, a class method, a class instance method, an instance of a callable
class or even a lambda function.
Example:
@dataclass
class A(DataClassDictMixin):
dt: datetime = field(
metadata={
"serialize": lambda v: v.strftime('%Y-%m-%d %H:%M:%S')
}
)
deserialize
option
This option allows you to change the deserialization method. When using
this option, the deserialization behaviour depends on what type of value the
option has. It could be either Callable[[Any], Any]
or str
.
A value of type Callable[[Any], Any]
is a generic way to specify any callable
object like a function, a class method, a class instance method, an instance
of a callable class or even a lambda function to be called for deserialization.
A value of type str
sets a specific engine for deserialization. Keep in mind
that all possible engines depend on the field type that this option is used
with. At this moment there are next deserialization engines to choose from:
Applicable field types | Supported engines | Description |
---|---|---|
datetime , date , time |
ciso8601 , pendulum |
How to parse datetime string. By default native fromisoformat of corresponding class will be used for datetime , date and time fields. It's the fastest way in most cases, but you can choose an alternative. |
Example:
from datetime import datetime
from dataclasses import dataclass, field
from typing import List
from mashumaro import DataClassDictMixin
import ciso8601
import dateutil
@dataclass
class A(DataClassDictMixin):
x: datetime = field(
metadata={"deserialize": "pendulum"}
)
class B(DataClassDictMixin):
x: datetime = field(
metadata={"deserialize": ciso8601.parse_datetime_as_naive}
)
@dataclass
class C(DataClassDictMixin):
dt: List[datetime] = field(
metadata={
"deserialize": lambda l: list(map(dateutil.parser.isoparse, l))
}
)
serialization_strategy
option
This option is useful when you want to change the serialization behaviour for a class depending on some defined parameters. For this case you can create the special class implementing SerializationStrategy interface:
from dataclasses import dataclass, field
from datetime import datetime
from mashumaro import DataClassDictMixin
from mashumaro.types import SerializationStrategy
class FormattedDateTime(SerializationStrategy):
def __init__(self, fmt):
self.fmt = fmt
def serialize(self, value: datetime) -> str:
return value.strftime(self.fmt)
def deserialize(self, value: str) -> datetime:
return datetime.strptime(value, self.fmt)
@dataclass
class DateTimeFormats(DataClassDictMixin):
short: datetime = field(
metadata={
"serialization_strategy": FormattedDateTime(
fmt="%d%m%Y%H%M%S",
)
}
)
verbose: datetime = field(
metadata={
"serialization_strategy": FormattedDateTime(
fmt="%A %B %d, %Y, %H:%M:%S",
)
}
)
formats = DateTimeFormats(
short=datetime(2019, 1, 1, 12),
verbose=datetime(2019, 1, 1, 12),
)
dictionary = formats.to_dict()
# {'short': '01012019120000', 'verbose': 'Tuesday January 01, 2019, 12:00:00'}
assert DateTimeFormats.from_dict(dictionary) == formats
If you don't want to remember the names of the options you can use
field_options
helper function:
from dataclasses import dataclass, field
from mashumaro import DataClassDictMixin, field_options
@dataclass
class A(DataClassDictMixin):
x: int = field(
metadata=field_options(
serialize=str,
deserialize=int,
...
)
)
More options are on the way. If you know which option would be useful for many, please don't hesitate to create an issue or pull request.
Config options
If inheritance is not an empty word for you, you'll fall in love with the
Config
class. You can register serialize
and deserialize
methods, define
code generation options and other things just in one place. Or in some
classes in different ways if you need flexibility. Inheritance is always on the
first place.
There is a base class BaseConfig
that you can inherit for the sake of
convenience, but it's not mandatory.
In the following example you can see how
the debug
flag is changed from class to class: ModelA
will have debug mode enabled but
ModelB
will not.
from mashumaro import DataClassDictMixin
from mashumaro.config import BaseConfig
class BaseModel(DataClassDictMixin):
class Config(BaseConfig):
debug = True
class ModelA(BaseModel):
a: int
class ModelB(BaseModel):
b: int
class Config(BaseConfig):
debug = False
Next section describes all supported options to use in the config.
debug
config option
If you enable the debug
option the generated code for your data class
will be printed.
omit_none
config option
If you want to skip None
values on serialization you can add omit_none
parameter to to_dict
method using the code_generation_options
list:
from dataclasses import dataclass
from typing import Optional
from mashumaro import DataClassDictMixin
from mashumaro.config import BaseConfig, TO_DICT_ADD_OMIT_NONE_FLAG
@dataclass
class Inner(DataClassDictMixin):
x: int = None
# "x" won't be omitted since there is no TO_DICT_ADD_OMIT_NONE_FLAG here
@dataclass
class Model(DataClassDictMixin):
x: Inner
a: int = None
b: str = None # will be omitted
class Config(BaseConfig):
code_generation_options = [TO_DICT_ADD_OMIT_NONE_FLAG]
Model(x=Inner(), a=1).to_dict(omit_none=True) # {'x': {'x': None}, 'a': 1}
serialization_strategy
config option
You can register custom SerializationStrategy
, serialize
and deserialize
methods for specific types just in one place. It could be configured using
a dictionary with types as keys. The value could be either a
SerializationStrategy
instance or a dictionary with serialize
and
deserialize
values with the same meaning as in the
field options.
from dataclasses import dataclass
from datetime import datetime, date
from mashumaro import DataClassDictMixin
from mashumaro.config import BaseConfig
from mashumaro.types import SerializationStrategy
class FormattedDateTime(SerializationStrategy):
def __init__(self, fmt):
self.fmt = fmt
def serialize(self, value: datetime) -> str:
return value.strftime(self.fmt)
def deserialize(self, value: str) -> datetime:
return datetime.strptime(value, self.fmt)
@dataclass
class DataClass(DataClassDictMixin):
datetime: datetime
date: date
class Config(BaseConfig):
serialization_strategy = {
datetime: FormattedDateTime("%Y"),
date: {
# you can use specific str values for datetime here as well
"deserialize": "pendulum",
"serialize": date.isoformat,
},
}
instance = DataClass.from_dict({"datetime": "2021", "date": "2021"})
# DataClass(datetime=datetime.datetime(2021, 1, 1, 0, 0), date=Date(2021, 1, 1))
dictionary = instance.to_dict()
# {'datetime': '2021', 'date': '2021-01-01'}
Serialization hooks
In some cases you need to prepare input / output data or do some extraordinary actions at different stages of the deserialization / serialization lifecycle. You can do this with different types of hooks.
Before deserialization
For doing something with a dictionary that will be passed to deserialization
you can use __pre_deserialize__
class method:
@dataclass
class A(DataClassJSONMixin):
abc: int
@classmethod
def __pre_deserialize__(cls, d: Dict[Any, Any]) -> Dict[Any, Any]:
return {k.lower(): v for k, v in d.items()}
print(DataClass.from_dict({"ABC": 123})) # DataClass(abc=123)
print(DataClass.from_json('{"ABC": 123}')) # DataClass(abc=123)
After deserialization
For doing something with a dataclass instance that was created as a result
of deserialization you can use __post_deserialize__
class method:
@dataclass
class A(DataClassJSONMixin):
abc: int
@classmethod
def __post_deserialize__(cls, obj: 'A') -> 'A':
obj.abc = 456
return obj
print(DataClass.from_dict({"abc": 123})) # DataClass(abc=456)
print(DataClass.from_json('{"abc": 123}')) # DataClass(abc=456)
Before serialization
For doing something before serialization you can use __pre_serialize__
method:
@dataclass
class A(DataClassJSONMixin):
abc: int
counter: ClassVar[int] = 0
def __pre_serialize__(self) -> 'A':
self.counter += 1
return self
obj = DataClass(abc=123)
obj.to_dict()
obj.to_json()
print(obj.counter) # 2
After serialization
For doing something with a dictionary that was created as a result of
serialization you can use __post_serialize__
method:
@dataclass
class A(DataClassJSONMixin):
user: str
password: str
def __post_serialize__(self, d: Dict[Any, Any]) -> Dict[Any, Any]:
d.pop('password')
return d
obj = DataClass(user="name", password="secret")
print(obj.to_dict()) # {"user": "name"}
print(obj.to_json()) # '{"user": "name"}'
TODO
- add optional validation
- write custom useful types such as URL, Email etc
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mashumaro-2.0.2.tar.gz
.
File metadata
- Download URL: mashumaro-2.0.2.tar.gz
- Upload date:
- Size: 26.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ade42256bdf8dc9fe3c65a89645151c263719efd0d9463660329415caa79fcd2 |
|
MD5 | c58be972047834b41488fcc04ae5b702 |
|
BLAKE2b-256 | 35bbc97642c9ecf6eea4a45abe3190036a1afdbcb8e095a036489e13055d23a8 |