Skip to main content

MAT-data: Data Preprocessing for Multiple Aspect Trajectory Data Mining

Project description

MAT-data: Data Preprocessing for Multiple Aspect Trajectory Data Mining [MAT-Tools Framework]


[Publication] [citation.bib] [GitHub] [PyPi]

The present package offers a tool, to support the user in the task of data preprocessing of multiple aspect trajectories, or to generating synthetic datasets. It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods.

Created on Dec, 2023 Copyright (C) 2023, License GPL Version 3 or superior (see LICENSE file)

Main Modules

  • proprocess: Methods for trajectory preprocessing;
  • generator: Methods for trajectory datasets generation.

Installation

Install directly from PyPi repository, or, download from github. (python >= 3.7 required)

    pip install mat-data

Getting Started

On how to use this package, see MAT-data-Tutorial.ipynb (or the HTML MAT-data-Tutorial.html)

Citing

If you use mat-data please cite the following paper (this package is fragmented from automatize realease):

Portela, Tarlis Tortelli; Bogorny, Vania; Bernasconi, Anna; Renso, Chiara. AutoMATise: Multiple Aspect Trajectory Data Mining Tool Library. 2022 23rd IEEE International Conference on Mobile Data Management (MDM), 2022, pp. 282-285, doi: 10.1109/MDM55031.2022.00060.

Bibtex:

@inproceedings{Portela2022automatise,
    title={AutoMATise: Multiple Aspect Trajectory Data Mining Tool Library},
    author={Portela, Tarlis Tortelli and Bogorny, Vania and Bernasconi, Anna and Renso, Chiara},
    booktitle = {2022 23rd IEEE International Conference on Mobile Data Management (MDM)},
    volume={},
    number={},
    address = {Online},
    year={2022},
    pages = {282--285},
    doi={10.1109/MDM55031.2022.00060}
}

Collaborate with us

Any contribution is welcome. This is an active project and if you would like to include your code, feel free to fork the project, open an issue and contact us.

Feel free to contribute in any form, such as scientific publications referencing this package, teaching material and workshop videos.

Related packages

This package is part of MAT-Tools Framework for Multiple Aspect Trajectory Data Mining:

  • automatize: automatize for experimental evaluation of MAT classification
  • movelets: movelets for MAT classification methods (based on movelets)
  • mat-data: mat-data is a preprocessing library for MAT data
  • mat-analysis: mat-analysis for MAT classification methods
  • mat-view: mat-view for MAT and movelets visualization, and interpratation tools

Change Log

This is a package under construction, see CHANGELOG.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mat-data-0.1b12.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

mat_data-0.1b12-py3-none-any.whl (1.4 MB view details)

Uploaded Python 3

File details

Details for the file mat-data-0.1b12.tar.gz.

File metadata

  • Download URL: mat-data-0.1b12.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for mat-data-0.1b12.tar.gz
Algorithm Hash digest
SHA256 614c391a135803e248f5e4f203e7571be172eb0c230161e062a6278b1f702c11
MD5 f3dced16a2cdf42aa264e1f75585e07d
BLAKE2b-256 0c2c34ca347b053fca831234727ed35b9d8d25833c20a0bc23c43fffe1962242

See more details on using hashes here.

File details

Details for the file mat_data-0.1b12-py3-none-any.whl.

File metadata

  • Download URL: mat_data-0.1b12-py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for mat_data-0.1b12-py3-none-any.whl
Algorithm Hash digest
SHA256 2c147fb2ab9c6866b3f288a26b9591b726ade0f62cff181001f2ff6a652adc90
MD5 570af44d25c3cb7665a55a5bc2f804d5
BLAKE2b-256 3ed65d54f89f25a0c69bf87ea8870724f3618de11cc2e63226b29b2a19eb6b4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page