Skip to main content

Design lumped-parameters matching networks (L-sections)

Project description

matching_network

Solve L-section lumped parameters matching networks in a wink. (See How to use section)

Shunt-series config.

Series-shunt config.

Jupyter Notebooks
L-section_matching_calculations (Initial Jupyter notebook implementation)
Calculations (Matlab pre-calculations)

Downloads

Installation

pip install matching_network

How to use

From the CLI

matching_network --from 100 --to 20+43j --freq 13.56e6 # both impedances in Ω. 
From (100+0j) Ω to (20+43j) Ω

normalized starting impedance = (100+0j)Ω / (20+43j)Ω = 0.88928-1.912j

#solutions: 4

shunt-series
    Shunt Inductor:
    X = 50 Ω ⇔ B = -20 mS
    L = 586.85 nH  (@ 13.56 MHz)
    Series Inductor:
    X = 3 Ω ⇔ B = -333.33 mS
    L = 35.211 nH  (@ 13.56 MHz)
shunt-series
    Shunt Capacitor:
    X = -50 Ω ⇔ B = 20 mS
    C = 234.74 pF  (@ 13.56 MHz)
    Series Inductor:
    X = 83 Ω ⇔ B = -12.048 mS
    L = 974.18 nH  (@ 13.56 MHz)
series-shunt
    Series Inductor:
    X = 35.285 Ω ⇔ B = -28.341 mS
    L = 414.14 nH  (@ 13.56 MHz)
    Shunt Inductor:
    X = 62.571 Ω ⇔ B = -15.982 mS
    L = 734.4 nH  (@ 13.56 MHz)
series-shunt
    Series Capacitor:
    X = -35.285 Ω ⇔ B = 28.341 mS
    C = 332.64 pF  (@ 13.56 MHz)
    Shunt Inductor:
    X = 44.929 Ω ⇔ B = -22.257 mS
    L = 527.33 nH  (@ 13.56 MHz)
matching_network --from "24.3+8.3j mS"  --to 1.1+9.3j # default in Ω unless specified, using `mS`.

Inside Python

>>> import matching_network as mn
>>>
>>> impedance_you_have         = 90 + 32j # Ω
>>> impedance_you_want_to_have = 175      # Ω
>>>
>>> frequency                  = 900e6    # Hz
>>>
>>> mn.L_section_matching(impedance_you_have, impedance_you_want_to_have, frequency).match()
From (90+32j) Ω to 175 Ω

normalized starting impedance = (90+32j)Ω/175Ω = 0.51429+0.18286j

#solutions: 2

series-shunt
    Series Inductor:
    X = 55.464 Ω  B = -18.03 mS
    L = 9.8082 nH  (@ 900 MHz)
    Shunt Capacitor:
    X = -180.07 Ω  B = 5.5533 mS
    C = 982.04 fF  (@ 900 MHz)

series-shunt
    Series Capacitor:
    X = -119.46 Ω  B = 8.3707 mS
    C = 1.4803 pF  (@ 900 MHz)
    Shunt Inductor:
    X = 180.07 Ω  B = -5.5533 mS
    L = 31.844 nH  (@ 900 MHz)

>>>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matching_network-0.1.6.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

matching_network-0.1.6-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file matching_network-0.1.6.tar.gz.

File metadata

  • Download URL: matching_network-0.1.6.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.8.9 Darwin/18.7.0

File hashes

Hashes for matching_network-0.1.6.tar.gz
Algorithm Hash digest
SHA256 e89feab35d7bdf10434df864736caeed6000394c54143085429fc1599131c35f
MD5 31401e40d26583a9a90fe4dddea0262b
BLAKE2b-256 74b7a063dcdd8ee3fb76d168bb3fe6e209df23493a7859e32fef30e3666d33df

See more details on using hashes here.

File details

Details for the file matching_network-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for matching_network-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 6eb888910c09b6910bfcdca3a07961b93c5b69be7af78c7c79a777c52e9e4ea2
MD5 0fcd622070ed29daba1dc99bc81f0c0d
BLAKE2b-256 5e657d2d92f33f2fd43cafee4da7fc6e9b08dec33685b1aa1c0c17111ba8bcfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page