Skip to main content

No project description provided

Project description

MATLIB

MatLib is a little python 2D-matrix-handling library. The following documentation will guide you through!

Getting started:

pip install matlib

export n_digits=2 # precision: Optional[int], default is 3

Standard operations:

import matlib as ml

a = ml.Matrix([
    [1, 1],
    [1, 1],
    [1, 1],
    [1, 1]
])

b = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

print(a) # casting types

# [[1.00, 1.00]
#  [1.00, 1.00]
#  [1.00, 1.00]
#  [1.00, 1.00]]
print(a + b) # +, -, *, /, //, %

# [[3.00, 3.00]
#  [3.00, 3.00]
#  [3.00, 3.00]
#  [3.00, 3.00]]
print(a - 100) # +, -, *, /, //, %

# [[-99.00, -99.00]
#  [-99.00, -99.00]
#  [-99.00, -99.00]
#  [-99.00, -99.00]]
a *= 2.5 # inplace
print(a)

# [[2.50, 2.50]
#  [2.50, 2.50]
#  [2.50, 2.50]
#  [2.50, 2.50]]

Exponentiation:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2]
])

print(a ** 3) # int

# [[32.00, 32.00]
#  [32.00, 32.00]]

Matrix multiplication:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

b = ml.Matrix([
    [3, 3, 3, 3],
    [3, 3, 3, 3]
])

print(a @ b)

# [[12.00, 12.00, 12.00, 12.00]
#  [12.00, 12.00, 12.00, 12.00]
#  [12.00, 12.00, 12.00, 12.00]
#  [12.00, 12.00, 12.00, 12.00]]

Transponing:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

print(a.T)

# [[2.00, 2.00, 2.00, 2.00]
#  [2.00, 2.00, 2.00, 2.00]]

Getting the size:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

print(a.size)

# (4, 2)

The functions:

1. Calculating the determinant of the matrix:

func: det(matrix: ml.Matrix) -> float

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2]
])

b = ml.det(a)
print(b)

# 0.0

2. Matrix multiplication:

func: mul(matrix_1: ml.Matrix, matrix_2: ml.Matrix ) -> ml.Matrix

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

b = ml.Matrix([
    [3, 3, 3, 3],
    [3, 3, 3, 3]
])

c = ml.mul(a, b)
print(c)

# [[12.00, 12.00, 12.00, 12.00]
#  [12.00, 12.00, 12.00, 12.00]
#  [12.00, 12.00, 12.00, 12.00]
#  [12.00, 12.00, 12.00, 12.00]]

3. Matrix exponentiation:

func: pow(matrix: ml.Matrix, exp: int = 1 ) -> ml.Matrix

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2]
])

b = ml.pow(a, 3)
print(b)

# [[32.00, 32.00]
#  [32.00, 32.00]]

4. Mqtrix transposing:

func: transpose(matrix: ml.Matrix) -> ml.Matrix

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

b = transpose(a)
print(b)

# [[2.00, 2.00, 2.00, 2.00]
#  [2.00, 2.00, 2.00, 2.00]]

5. Least Squares method:

func: least_squares(matrix: ml.Matrix, matrix_ans: ml.Matrix ) -> ml.Matrix

Finds an approximate solution for a system of linear equations.

import matlib as ml

a = ml.Matrix([
    [1, 1],
    [2, 1],
    [1, 5],
    [4, 1]
])

b = ml.Matrix([    
    [1],
    [4],
    [3],
    [7]
])

c = ml.least_squares(a, b)
print(c)

# [[1.69]
#  [0.24]]

6. Gaussian Elimination method:

func: gaussian_elimination(matrix: ml.Matrix, matrix_ans: ml.Matrix ) -> ml.Matrix

Solves a system of linear equations using the Gaussian Elimination method. The program responds whether the answer to the system exists, does not exist or is an infinite amount of answers.

import matlib as ml

a = ml.Matrix([
    [3, 1, -2, 1],
    [2, 3, -1, 2],
    [1, -2, 2, -1],
    [1, 3, -1, 1]
    
])

b = ml.Matrix([
    [5],
    [4],
    [4],
    [0]
])

c = ml.gaussian_elimination(a, b)
print(c)

# [[ 2.00]
#  [-1.00]
#  [ 1.00]
#  [ 2.00]]

print(a @ c) # checking the answer

# [[5.00]
#  [4.00]
#  [4.00]
#  [0.00]]
a = ml.Matrix([
    [2, -4],
    [-3, 6],
])

b = ml.Matrix([
    [-1],
    [2]
])

c = gaussian_elimination(a, b)
print(c)

# System of equations cannot be solved
# [[]]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matlib-0.1.2.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

matlib-0.1.2-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file matlib-0.1.2.tar.gz.

File metadata

  • Download URL: matlib-0.1.2.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.2.0-32-generic

File hashes

Hashes for matlib-0.1.2.tar.gz
Algorithm Hash digest
SHA256 c7c44e49d22ed3d5b3563c99863d8437961820a3173abc6e15b48d53c3d3370f
MD5 0a8f42231d156c94d54a771006d2fc2b
BLAKE2b-256 f47b56ee37cfddc71898610e485ce8a5154e9ff119a3742b014ffbde3c1cf623

See more details on using hashes here.

File details

Details for the file matlib-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: matlib-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.2.0-32-generic

File hashes

Hashes for matlib-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 49cfbdb941870653016eef7f3df15b5f3dcc2880affad716959c9c3ad8a0bc71
MD5 abc0deb8a8f5067b89198261d0e59a64
BLAKE2b-256 b5c15141b518a12f366917fdae938f7265104102ce70e2c425277c2383f36b4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page