No project description provided
Project description
MATLIB
MatLib is a little python 2D-matrix-handling library. The following documentation will guide you through!
Getting started:
pip install matlib
export n_digits=2 # precision: Optional[int], default is 3
Standard operations:
import matlib as ml
a = ml.Matrix([
[1, 1],
[1, 1],
[1, 1],
[1, 1]
])
b = ml.Matrix([
[2, 2],
[2, 2],
[2, 2],
[2, 2]
])
print(a) # casting types
#[[1.00, 1.00]
# [1.00, 1.00]
# [1.00, 1.00]
# [1.00, 1.00]]
print(a + b) # +, -, *, /, //, %
#[[3.00, 3.00]
# [3.00, 3.00]
# [3.00, 3.00]
# [3.00, 3.00]]
print(a - 100) # +, -, *, /, //, %
#[[-99.00, -99.00]
# [-99.00, -99.00]
# [-99.00, -99.00]
# [-99.00, -99.00]]
a *= 2.5 # inplace
print(a)
#[[2.50, 2.50]
# [2.50, 2.50]
# [2.50, 2.50]
# [2.50, 2.50]]
Exponentiation:
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2]
])
print(a ** 3) # int
#[[32.00, 32.00]
# [32.00, 32.00]]
Matrix multiplication:
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2],
[2, 2],
[2, 2]
])
b = ml.Matrix([
[3, 3, 3, 3],
[3, 3, 3, 3]
])
print(a @ b)
#[[12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]]
Transponing:
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2],
[2, 2],
[2, 2]
])
print(a.T)
#[[2.00, 2.00, 2.00, 2.00]
# [2.00, 2.00, 2.00, 2.00]]
Getting the size:
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2],
[2, 2],
[2, 2]
])
print(a.size)
#(4, 2)
The functions:
1. Calculating the determinant of the matrix:
func: det(matrix: ml.Matrix) -> float
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2]
])
b = ml.det(a)
print(b)
# 0.0
2. Matrix multiplication:
func: mul(matrix_1: ml.Matrix, matrix_2: ml.Matrix ) -> ml.Matrix
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2],
[2, 2],
[2, 2]
])
b = ml.Matrix([
[3, 3, 3, 3],
[3, 3, 3, 3]
])
c = ml.mul(a, b)
print(c)
#[[12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]]
3. Matrix exponentiation:
func: pow(matrix: ml.Matrix, exp: int = 1 ) -> ml.Matrix
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2]
])
b = ml.pow(a, 3)
print(b)
#[[32.00, 32.00]
# [32.00, 32.00]]
4. Mqtrix transposing:
func: transpose(matrix: ml.Matrix) -> ml.Matrix
import matlib as ml
a = ml.Matrix([
[2, 2],
[2, 2],
[2, 2],
[2, 2]
])
b = transpose(a)
print(b)
#[[2.00, 2.00, 2.00, 2.00]
# [2.00, 2.00, 2.00, 2.00]]
5. Least Squares method:
func: least_squares(matrix: ml.Matrix, matrix_ans: ml.Matrix ) -> ml.Matrix
Finds an approximate solution for a system of linear equations.
import matlib as ml
a = ml.Matrix([
[1, 1],
[2, 1],
[1, 5],
[4, 1]
])
b = ml.Matrix([
[1],
[4],
[3],
[7]
])
c = ml.least_squares(a, b)
print(c)
#[[1.69]
# [0.24]]
6. Gaussian Elimination method:
func: gaussian_elimination(matrix: ml.Matrix, matrix_ans: ml.Matrix ) -> ml.Matrix
Solves a system of linear equations using the Gaussian Elimination method. The program responds whether the answer to the system exists, does not exist or is an infinite amount of answers.
import matlib as ml
a = ml.Matrix([
[3, 1, -2, 1],
[2, 3, -1, 2],
[1, -2, 2, -1],
[1, 3, -1, 1]
])
b = ml.Matrix([
[5],
[4],
[4],
[0]
])
c = ml.gaussian_elimination(a, b)
print(c)
#[[ 2.00]
# [-1.00]
# [ 1.00]
# [ 2.00]]
print(a @ c) # checking the answer
#[[5.00]
# [4.00]
# [4.00]
# [0.00]]
a = ml.Matrix([
[2, -4],
[-3, 6],
])
b = ml.Matrix([
[-1],
[2]
])
c = gaussian_elimination(a, b)
print(c)
#System of equations cannot be solved
#[[]]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file matlib-0.1.1.tar.gz
.
File metadata
- Download URL: matlib-0.1.1.tar.gz
- Upload date:
- Size: 6.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.2.0-32-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f3d667d66d3b0b03aeee34a76069cd13eec4057888d3f922ed7a6f9dc53b7dd |
|
MD5 | ea34e9a1d5e80de18f30772b1ed9ac7c |
|
BLAKE2b-256 | 88265c7f70436649b4d0469cd9fc4e22b6d68298d91b6aa44a8f77962ebb961b |
File details
Details for the file matlib-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: matlib-0.1.1-py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.2.0-32-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d19c885a21118af561212613f4671c66f8a3816ed5c5940e71ea0e869eeae935 |
|
MD5 | dfd6c4e13801691f5d5d4440636af1bc |
|
BLAKE2b-256 | 3c932a4f872967dae837007106fde568a543ba4e9f891c7f1fba9d1e44938138 |