Skip to main content

No project description provided

Project description

MATLIB

MatLib is a little python 2D-matrix-handling library. The following documentation will guide you through!

Getting started:

pip install matlib

export n_digits=2 # precision: Optional[int], default is 3

Standard operations:

import matlib as ml

a = ml.Matrix([
    [1, 1],
    [1, 1],
    [1, 1],
    [1, 1]
])

b = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

print(a) # casting types

#[[1.00, 1.00]
# [1.00, 1.00]
# [1.00, 1.00]
# [1.00, 1.00]]
print(a + b) # +, -, *, /, //, %

#[[3.00, 3.00]
# [3.00, 3.00]
# [3.00, 3.00]
# [3.00, 3.00]]
print(a - 100) # +, -, *, /, //, %

#[[-99.00, -99.00]
# [-99.00, -99.00]
# [-99.00, -99.00]
# [-99.00, -99.00]]
a *= 2.5 # inplace
print(a)

#[[2.50, 2.50]
# [2.50, 2.50]
# [2.50, 2.50]
# [2.50, 2.50]]

Exponentiation:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2]
])

print(a ** 3) # int

#[[32.00, 32.00]
# [32.00, 32.00]]

Matrix multiplication:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

b = ml.Matrix([
    [3, 3, 3, 3],
    [3, 3, 3, 3]
])

print(a @ b)

#[[12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]]

Transponing:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

print(a.T)

#[[2.00, 2.00, 2.00, 2.00]
# [2.00, 2.00, 2.00, 2.00]]

Getting the size:

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

print(a.size)

#(4, 2)

The functions:

1. Calculating the determinant of the matrix:

func: det(matrix: ml.Matrix) -> float

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2]
])

b = ml.det(a)
print(b)

# 0.0

2. Matrix multiplication:

func: mul(matrix_1: ml.Matrix, matrix_2: ml.Matrix ) -> ml.Matrix

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

b = ml.Matrix([
    [3, 3, 3, 3],
    [3, 3, 3, 3]
])

c = ml.mul(a, b)
print(c)

#[[12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]
# [12.00, 12.00, 12.00, 12.00]]

3. Matrix exponentiation:

func: pow(matrix: ml.Matrix, exp: int = 1 ) -> ml.Matrix

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2]
])

b = ml.pow(a, 3)
print(b)

#[[32.00, 32.00]
# [32.00, 32.00]]

4. Mqtrix transposing:

func: transpose(matrix: ml.Matrix) -> ml.Matrix

import matlib as ml

a = ml.Matrix([
    [2, 2],
    [2, 2],
    [2, 2],
    [2, 2]
])

b = transpose(a)
print(b)

#[[2.00, 2.00, 2.00, 2.00]
# [2.00, 2.00, 2.00, 2.00]]

5. Least Squares method:

func: least_squares(matrix: ml.Matrix, matrix_ans: ml.Matrix ) -> ml.Matrix

Finds an approximate solution for a system of linear equations.

import matlib as ml

a = ml.Matrix([
    [1, 1],
    [2, 1],
    [1, 5],
    [4, 1]
])

b = ml.Matrix([    
    [1],
    [4],
    [3],
    [7]
])

c = ml.least_squares(a, b)
print(c)

#[[1.69]
# [0.24]]

6. Gaussian Elimination method:

func: gaussian_elimination(matrix: ml.Matrix, matrix_ans: ml.Matrix ) -> ml.Matrix

Solves a system of linear equations using the Gaussian Elimination method. The program responds whether the answer to the system exists, does not exist or is an infinite amount of answers.

import matlib as ml

a = ml.Matrix([
    [3, 1, -2, 1],
    [2, 3, -1, 2],
    [1, -2, 2, -1],
    [1, 3, -1, 1]
    
])

b = ml.Matrix([
    [5],
    [4],
    [4],
    [0]
])

c = ml.gaussian_elimination(a, b)
print(c)

#[[ 2.00]
# [-1.00]
# [ 1.00]
# [ 2.00]]

print(a @ c) # checking the answer

#[[5.00]
# [4.00]
# [4.00]
# [0.00]]
a = ml.Matrix([
    [2, -4],
    [-3, 6],
])

b = ml.Matrix([
    [-1],
    [2]
])

c = gaussian_elimination(a, b)
print(c)

#System of equations cannot be solved
#[[]]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matlib-0.1.1.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

matlib-0.1.1-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file matlib-0.1.1.tar.gz.

File metadata

  • Download URL: matlib-0.1.1.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.2.0-32-generic

File hashes

Hashes for matlib-0.1.1.tar.gz
Algorithm Hash digest
SHA256 9f3d667d66d3b0b03aeee34a76069cd13eec4057888d3f922ed7a6f9dc53b7dd
MD5 ea34e9a1d5e80de18f30772b1ed9ac7c
BLAKE2b-256 88265c7f70436649b4d0469cd9fc4e22b6d68298d91b6aa44a8f77962ebb961b

See more details on using hashes here.

File details

Details for the file matlib-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: matlib-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.2.0-32-generic

File hashes

Hashes for matlib-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d19c885a21118af561212613f4671c66f8a3816ed5c5940e71ea0e869eeae935
MD5 dfd6c4e13801691f5d5d4440636af1bc
BLAKE2b-256 3c932a4f872967dae837007106fde568a543ba4e9f891c7f1fba9d1e44938138

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page