A Python math and physics module

## Project description

matphys v1.1.27

A Python math and physics modules

Pascal’s Triangle

Bell Triangle

Euler’s Triangle

Euler’s Constant

Power Series

Floyd’s Triangle

Fibonacci Sequence

pascal module

Pascal’s Triangle

>>> from matphys import pascal >>> p = pascal.PascalTriangle(10) #arg is the number of rows wanted >>> p.read() [1] [1, 1] [1, 2, 1] [1, 3, 3, 1] [1, 4, 6, 4, 1] [1, 5, 10, 10, 5, 1] [1, 6, 15, 20, 15, 6, 1] [1, 7, 21, 35, 35, 21, 7, 1] [1, 8, 28, 56, 70, 56, 28, 8, 1] [1, 9, 36, 84, 126, 126, 84, 36, 9, 1] >>> p.row(5) #arg is row number 16

bell module

Bell Triangle

>>> from matphys import bell >>> b = bell.BellTriangle(10) #arg is the number of rows wanted >>> b.read() [1] [1, 2] [2, 3, 5] [5, 7, 10, 15] [15, 20, 27, 37, 52] [52, 67, 87, 114, 151, 203] [203, 255, 322, 409, 523, 674, 877] [877, 1080, 1335, 1657, 2066, 2589, 3263, 4140] [4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147] [21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975] >>> b.row(5) #arg is row number 151

floyd module

Floyd’s Triangle

>>> from matphys import floyd >>> f = floyd.FloydTriangle(10) #arg is the number of rows wanted >>> f.read() [1] [2, 3] [4, 5, 6] [7, 8, 9, 10] [11, 12, 13, 14, 15] [16, 17, 18, 19, 20, 21] [22, 23, 24, 25, 26, 27, 28] [29, 30, 31, 32, 33, 34, 35, 36] [37, 38, 39, 40, 41, 42, 43, 44, 45] [46, 47, 48, 49, 50, 51, 52, 53, 54, 55] >>> f.row(5) #arg is row number 65

euler module

Euler’s Triangle

>>> from matphys import euler >>> e = euler.EulerTriangle(10) #arg is the number of rows wanted >>> e.read() [1] [1, 1] [1, 4, 1] [1, 11, 11, 1] [1, 26, 66, 26, 1] [1, 57, 302, 302, 57, 1] [1, 120, 1191, 2416, 1191, 120, 1] [1, 247, 4293, 15619, 15619, 4293, 247, 1] [1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1] [1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1] >>> e.row(5) 120

Euler’s Number

Euler’s number is represented by (e) in mathematics

>>> from matphys import euler >>> e = euler.EulerNumber(128500000) #arg is the precision >>> e.read() 2.7182818243

Euler’s Constant

Euler’s Constant is represented by gamma (γ) in mathematics

>>> from matphys import euler >>> e = euler.EulerConstant(10000000) #arg is the precision of the constant >>> e.read() 0.577265664068

Power Series

>>> from matphys import euler >>> p = euler.PowerSeries(10, 10) #args are (n, x) >>> p.read() 12842.305114638448

fibonacci module

Fibonacci Sequence

>>> from matphys import fibonacci >>> f = fibonacci.FibonacciSequence(10) #arg is the sequence out to the nth term >>> f.read() [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]