Skip to main content

it has a wide operation of matrix like addition , subtraction , multiplication , division.we can use it for,a matrix satisfy the properties and determinant is also available.

Project description

matrix operations

This is a matrix operations package. This matrix package has modules 1.mat_input(rows,columns)-enter rows and columns 2.unit_mat(dimension)-unit matrix is presents of 1 in diagonals.enter the no.of.rows or columns 3.constant_mat(constant,dimension)-constant matrix contains same numbers.enter the constant and no.of.rows 4.mat_multiple(matrix1,matrix2): normal matrix multiplication 5.mat_add(matrix1,matrix2): matrix addition 6.mat_sub(matrix1,matrix2): matrix subtraction 7.mat_div(matrix1,matrix2): matrix division 8.mat_trace(matrix1): trace of matrix 9.mat_transpose(matrix1): transpose of the matrix 10.det(matrix1): determinant of 2x2 , 3x3 matrix 11.adjoint(matrix1): adjoint of matrix 2x2 and 3x3 matrix 12.area(point1,point2,point3): area of triangle 13.cramer(equation matrix,equal to matrix): value of x,y or x,y,z for three equations 14.mat_inverse(matrix1): inverse of matrix 15.mat_mul(matrix1,matrix2): normal multiplication of matrix 16.mul_commutative(matrix1,matrix2): commutative property on multiplication 17.mul_assosiative(matrix1,matrix2,matrix3): assosiative property on multiplication 18.mul_distributive(matrix1,matrix2,matrix3): distributive property of matrix 19.add_commutative(matrix1,matrix2): commutative property on addition of matrix 20.add_assosiative(matrix1,matrix2,matrix3): associative property oon addition 21.additive_identity(matrix1,matrix2): additive identity of matrix 22.additive inverse(matrix1,matrix2): additive inverse of matrix 23.unitnum_mat(constant,dimension): diagonals have give number 24.mat_ortho(matrix1): orthogonal property of matrix 25.double transpose(matirx1): tranpose of a tranpose matrix:((a)T)T=a 26.sum_transpose(matrix1): transpose of sum of two matrix=sum of two transpose matrix (a+b)T=(a)T+(b)T 27.mul_transpose(matrix1):multiplication transpose is (ab)T=(b)T * (a)T 28.scalar_mul_transpose(matrix1):multiplication of constant with a matrix whole transpose = multiplication of a constant with the transpose of matrix (consta)T=const * (a)T

You can use Github-flavored Markdown to write your content.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matrixraja-0.0.2.tar.gz (5.2 kB view hashes)

Uploaded source

Built Distribution

matrixraja-0.0.2-py3-none-any.whl (5.7 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page