Skip to main content

Generic Python Materials Science tools

Project description

Tests Wheels JOSS

Matscipy

Matscipy is a generic materials science toolbox built around the Atomic Simulation Environment (ASE). It provides useful routines for:

  • Plasticity and dislocations

  • Fracture mechanics

  • Electro-chemistry

  • Tribology

  • Elastic properties

In addition to domain-specific routines, it also implements a set of general-purpose, low-level utilities:

  • Efficient neighbour lists

  • Atomic strain

  • Ring analysis

  • Correlation functions

  • Second order potential derivatives

Quick start

Matscipy can be installed on Windows, Linux and x86 macos with:

python3 -m pip install matscipy

To get the latest version directly (requires a working compiler):

python3 -m pip install git+https://github.com/libAtoms/matscipy.git

Compiled up-to-date wheels for Windows, Linux and x86 macos can be found here.

Documentation

Sphinx-generated documentation for the project can be found here. Since Matscipy is built on top of ASE’s Atoms and Calculator objects, ASE’s documentation is a good complement to Matscipy’s.

Seeking help

Issues can be used to ask questions about Matscipy.

Contributing

Contributions, in the form of bug reports, improvement suggestions, documentation or pull requests, are welcome.

Running tests

To run the tests locally, from Matscipy’s root directory:

python3 -m pip install .[test]  # installs matscipy + test dependencies
cd tests/
python3 -m pytest .

Editable installs

When developing matscipy, it can be useful to have an editable install of the source directory. This means that changes to the source code are directly reflected in the matscipy install. We are using Meson and meson-python as a build system, and there are some restriction to editable installs.

The editable install only works with the –no-build-isolation option:

python3 -m pip install --no-build-isolation --editable .[test]

If you get the message:

ERROR: Tried to form an absolute path to a dir in the source tree.

then you are most likely try to install into a Python virtual environment that is located inside your source directory. This is not possible; your virtual environment needs to be located outside of the source directory.

Dependencies

The package requires:

Optional packages:

Citing matscipy

Please cite the following publication if you use matscipy:

@article{Grigorev2024,
  author = {Grigorev, Petr and Frérot, Lucas and Birks, Fraser and Gola, Adrien and Golebiowski, Jacek and Grießer, Jan and Hörmann, Johannes L. and Klemenz, Andreas and Moras, Gianpietro and Nöhring, Wolfram G. and Oldenstaedt, Jonas A. and Patel, Punit and Reichenbach, Thomas and Rocke, Thomas and Shenoy, Lakshmi and Walter, Michael and Wengert, Simon and Zhang, Lei and Kermode, James R. and Pastewka, Lars},
  doi = {10.21105/joss.05668},
  journal = {Journal of Open Source Software},
  month = jan,
  number = {93},
  pages = {5668},
  title = {{matscipy: materials science at the atomic scale with Python}},
  url = {https://joss.theoj.org/papers/10.21105/joss.05668},
  volume = {9},
  year = {2024}
}

Funding

matscipy was partially funded by the Deutsch Forschungsgemeinschaft (project 258153560) and by the Engineering and Physical Sciences Research Council (grants EP/P002188/1, EP/R012474/1 and EP/R043612/1).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matscipy-1.1.1.tar.gz (10.4 MB view details)

Uploaded Source

Built Distributions

matscipy-1.1.1-cp312-cp312-win_amd64.whl (566.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

matscipy-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (449.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

matscipy-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (448.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

matscipy-1.1.1-cp312-cp312-macosx_11_0_arm64.whl (443.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

matscipy-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl (443.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

matscipy-1.1.1-cp311-cp311-win_amd64.whl (565.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

matscipy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (448.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

matscipy-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (447.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

matscipy-1.1.1-cp311-cp311-macosx_11_0_arm64.whl (444.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

matscipy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl (443.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

matscipy-1.1.1-cp310-cp310-win_amd64.whl (565.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

matscipy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (448.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

matscipy-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (447.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

matscipy-1.1.1-cp310-cp310-macosx_11_0_arm64.whl (444.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

matscipy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl (443.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

matscipy-1.1.1-cp39-cp39-win_amd64.whl (565.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

matscipy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (448.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

matscipy-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (448.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

matscipy-1.1.1-cp39-cp39-macosx_11_0_arm64.whl (444.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

matscipy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl (443.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

matscipy-1.1.1-cp38-cp38-win_amd64.whl (565.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

matscipy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (449.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

matscipy-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (448.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

matscipy-1.1.1-cp38-cp38-macosx_11_0_arm64.whl (444.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

matscipy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl (443.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file matscipy-1.1.1.tar.gz.

File metadata

  • Download URL: matscipy-1.1.1.tar.gz
  • Upload date:
  • Size: 10.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for matscipy-1.1.1.tar.gz
Algorithm Hash digest
SHA256 2d806d27bfcb99c6e365e0e20cee08e71952ce37b5df3667a1b955dbe26138c2
MD5 a822df102f11defdafcca3b1ebab2552
BLAKE2b-256 67a499d104ebaab040212eb46e9e78b0c264d79fa1396305745ad1d8f974fe59

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: matscipy-1.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 566.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for matscipy-1.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 15eccc94d60f6b7365712a611bb144f37b647a665f745a4dd2c0ed170a534c2d
MD5 1b4c519d071f0209aa1f74cba2f31a50
BLAKE2b-256 77115284ce41986d69f71116c7b7d5dde57da76b5bccf1dba10abc06958aa086

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8088bf43f3b383784321ad044bb03031c6c6a94038a0a7ec3c80b9122ded39b
MD5 fe9adf70c52debbc60d029dbf79f9707
BLAKE2b-256 a7e251247a22f02979020cb95b6480822478c8491b7fb6f792eff125dd15fb1a

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7180d932332dd8d3e00223954da44e9571167f58c768c2cee48cf7f85f0c4f27
MD5 78ad60a5ed1d045d93c33c58c2cc3523
BLAKE2b-256 39ae75c17ed5b45fa2fb8e529fe0fa524878b759f4bc9affbd14ea95ce52a485

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 845948900663640a6b1d7b2e8d20956dd443dbfa3dfbd1b2ceae45982ac0caf0
MD5 d5da243b69aaca876a239b53e020cd8d
BLAKE2b-256 4e4b321270220155ab2985520e27a6bdd5818f1d7a908dd066b15afd5f39d8e5

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 661bdb24472d192effce98ffb80b9b90ed481238a27bab0856c88ea6cdf6b2fd
MD5 693ae229cfac60b30e0b13ee7abd279b
BLAKE2b-256 f5bae082a33beeace6493c300ac0ddf6d7346cfb0d7ce4f06e4336ba39bd8863

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: matscipy-1.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 565.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for matscipy-1.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c39429604ad02865057ebe611ef15f077facc58890c33cc46449889a48539fd9
MD5 652b6452e008b38f63a40e4fd2a4e6c0
BLAKE2b-256 84a376dbe44f0e1efe020886e841ad72a9101282a66f92009d9bbf995cbdf4aa

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b32fd06e1b97f2df632ca5289863efef522e11c7e5ca62023bee8b01de0a274
MD5 4dd1662728fa968ab221cc512d0beeac
BLAKE2b-256 7779c12cca097156f55a71102a400d02fd352c6adb8b3d16464c4b4782d84147

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15ebc86f7ef293fa5161bccf9573f20f7cecced9fea8f1efe833ae67775cf45f
MD5 72aba33b6d540e84e1ee00999357de9b
BLAKE2b-256 2debcdf942573eacbc7a267bb7d8f84529096434d12a0d8e8b05b6b51ccd65a9

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c4824ff40a187d0a84ca0b341aa449109398798d717014f7f59e2660ecd6f05
MD5 fb9da11ed1bb461657b828d5b29e1d94
BLAKE2b-256 e04d8be5b139fbcb889f24a3edd2bba157575f931e91408309f231906e11ea72

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1865a7de629d356289867f1298ff08a280976fd20174a9749699cb1cb44397cb
MD5 7f15db328256068fa79d355300e2b88d
BLAKE2b-256 c608e27c620d821ff7653cc93c6211046354c7aa422b2289a2c202aeab6d7ac4

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: matscipy-1.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 565.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for matscipy-1.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a676d134e1aa31da17ea12d63eb3648f78df4c6e1e283b29b270a5017e2ba4aa
MD5 0c77c35490341774c37573f2f68b9c9a
BLAKE2b-256 36b7119092a4cd46c571ba1f717ac49a57b4ca59463c36b8ad53afeb66f677b9

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 233b8f6a27aeabe27f2288318ad5e24ee7476547eb0ba5e236d1f320e2a90e02
MD5 2357ef4a567e49faba197a58bd3564f1
BLAKE2b-256 d8a37d8941b1d749a745e1ab9761983f11fd91618ccfaa56662b2787c15e8334

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6eb023e71578678550ce713a9559c2704077100ae63b0bc252e385bd244a6e2b
MD5 3915856422df75ea960b89437c3cd074
BLAKE2b-256 27e846389744f5dad0ef3797e64dceda4c998e3aeff40aaccb84f9159a220c9a

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4b101fa81d2206a33a80fad5640a7189d0982c2dbe9f200314739592b2d25d8
MD5 ca8dbbdb9eb268297e2044864242bf3f
BLAKE2b-256 9868b4ce7491c0bea05586567ab84320ada9b26ce904db5883d8fdbeefeacc2d

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 586897ab3eb8657ad41d93395c1185ed26739a39e33a0c555f188996a530d05d
MD5 4d5dd6de219c794a551757fc6c7012e7
BLAKE2b-256 d530a2b676f877d812c8025fe213184fd13b67faa3602a1220681f90bb962f53

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: matscipy-1.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 565.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for matscipy-1.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f27bc5f2bb5b78e24e24059c60c7e7bb4d572f62b23dbf8f041e19f08bc65a05
MD5 f2ecbb198f0757de547f0ed389b8e8c0
BLAKE2b-256 01cdeeff42639a1cd220825a10719b176228b3e3f969cba8a5bf9dcf35d0a748

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6dbc060bf3806e8e53b6f01ea5647bb2444958b91d0f124b397f8f118e94d26
MD5 f696eb79f0a8a81ce5787c97c7253b42
BLAKE2b-256 dd0408e0e97c69bfb602eaa2d5c11fcc105433dc9eafb865cad6495bf82540c1

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16def72cff05c01d0b0b6bd6f482d2e6b908f1b1eaa7f7c38dce4c8213dfecf4
MD5 3cb0f1b55b29e9d6993fc402c4503835
BLAKE2b-256 c28cfda17c6379bf76937a9ff96ebf509b97d8842c8a048a9d852a4a584269e6

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12d044d8411147cfbba65f0a263f87ef322eba6cb1d60ca2fee6e1752b6c49e0
MD5 f03614cbd18cf142f5a0043a0daf27db
BLAKE2b-256 e569179812f8483a4a4624c81d49ee4b5a37ba9a57fad0971ae055501b1aa77b

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19cbc1a2637833bb39ab96efa5590a1aca3335aa53000a21003f168a6d732010
MD5 b36cc338f9fca92db89d069bf2fd89e0
BLAKE2b-256 f8b03950c63864746964391e93edc61045e247003792a67b36700dca5b9c29e3

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: matscipy-1.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 565.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for matscipy-1.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a6b0b6d3e522e5042b963d522124e9f4164f0436595616e7e35146755d8278d2
MD5 d7fa29c3bd221b5651e6729032152829
BLAKE2b-256 f68eb2e2299787aec319844485acfcc33189f748a6f2898b7580572c6a2e6852

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d95c7167745f804eec2842aa657d162ff6de1e5e66a15a0c5c612461fa6cd99d
MD5 a31a3d650e6f4c612fc4e66ba068f518
BLAKE2b-256 b99081a56e4fba45a432afd9ed5caf58de8b45aa022a2c933137f89b7b021116

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7dc2816291488b0a48f1efaa1dc08185642ada2e663b1d5f27afcb7794c25184
MD5 ef57334fcbaf7c905d3fe906c5685925
BLAKE2b-256 f3f254af1889d49db8f8f6e0feb1294b25804c2037934b429d91fb423cdb74e9

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7507bb4403d6f6c308299af7a0d0060db5748e7972eb79aac77e103abb048ec
MD5 9bfe2a6bafc539c9bb8eeed705071bb3
BLAKE2b-256 45262cea2b0753d9ef50288025aece7c0e7f5cb44a9b3298a3b5181774344f44

See more details on using hashes here.

File details

Details for the file matscipy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for matscipy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 347a0d27ee328d894f5ab0eb60e55a1dab9c4f1e866cc33c5f9f48b0af9d5f05
MD5 614f67de8618ae05b257e7763915d49e
BLAKE2b-256 23816c82dc38e17afd2e4a08e5d8fa7fa8bce993247490efd479f9ec25426aaa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page