Skip to main content

A Structural Variant Post-Processing Package

Project description

http://mavis.bcgsc.ca/docs/latest/_static/acronym.svg

PyPi build codecov ReadTheDocs

About

MAVIS is python command-line tool for the post-processing of structural variant calls. The general MAVIS pipeline consists of six main stages

Getting Help

All steps in the MAVIS pipeline are called following the main mavis entry point. The usage menu can be viewed by running without any arguments, or by giving the -h/–help option

mavis -h

Help sub-menus can be found by giving the pipeline step followed by no arguments or the -h options

mavis cluster -h

Common problems and questions are addressed on the wiki. If you have a question or issue that is not answered there (or already a github issue) please submit a github issue to our github page or contact us by email at mavis@bcgsc.ca

Install Instructions

There are 3 major steps to setting up and installing MAVIS. If you are a developer contributing to mavis, please see the instructions for developers page instead

1. Install Aligner

In addition to the python package dependencies, MAVIS also requires an aligner to be installed. Currently the only aligners supported are blat and bwa mem. For MAVIS to run successfully the aligner must be installed and accessible on the path. If you have a non-standard install you may find it useful to edit the PATH environment variable. For example

export PATH=/path/to/directory/containing/blat/binary:$PATH

blat is the default aligner. To configure MAVIS to use bwa mem as a default instead, use the MAVIS environment variables. Make sure to specify BOTH of the variables below to change the default aligner.

export MAVIS_ALIGNER='bwa mem'
export MAVIS_ALIGNER_REFERENCE=/path/to/mem/fasta/ref/file

After this has been installed MAVIS itself can be installed through pip

2. Install MAVIS

Install using pip

The easiest way to install MAVIS is through the python package manager, pip. If you do not have python3 installed it can be found here

Ensuring you have a recent version of pip and setuptools will improve the install experience. Older versions of pip and setuptools may have issues with obtaining some of the mavis python dependencies

pip install --upgrade pip setuptools

or (for Anaconda users)

conda update pip setuptools

If this is not a clean/new python install it may be useful to set up mavis in a virtual python environment

Then install mavis itself

pip install mavis

This will install mavis and its python dependencies.

Install using Buildout

Alternatively you can use the bootstrap/buildout to install mavis into bin/mavis

git clone https://github.com/bcgsc/mavis.git
cd mavis
pip install zc.buildout
python bootstrap.py
bin/buildout

This will install mavis and its python dependencies into eggs inside the cloned mavis directory which can be used by simply running bin/mavis

3. Build or Download Reference Files

After MAVIS is installed the reference files must be generated (or downloaded) before it can be run. A simple bash script to download the hg19 reference files and generate a MAVIS environment file is provided under mavis/tools for convenience.

cd /path/to/where/you/want/to/put/the/files
wget https://raw.githubusercontent.com/bcgsc/mavis/master/tools/get_hg19_reference_files.sh
bash get_hg19_reference_files.sh
source reference_inputs/hg19_env.sh

Once the above 3 steps are complete MAVIS is ready to be run. See the MAVIS tutorial to learn about running MAVIS.

Citation

If you use MAVIS as a part of your project please cite

Reisle,C. et al. (2018) MAVIS: Merging, Annotation, Validation, and Illustration of Structural variants. Bioinformatics.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mavis-2.2.8.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

mavis-2.2.8-py2.py3-none-any.whl (350.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file mavis-2.2.8.tar.gz.

File metadata

  • Download URL: mavis-2.2.8.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.7.2

File hashes

Hashes for mavis-2.2.8.tar.gz
Algorithm Hash digest
SHA256 7ae0018a4c9422076f5cdd0c184729fa6d55cebfbf6123b12eca5840207de76d
MD5 b36f30d8f1f2ad597d8d6c310c203dcb
BLAKE2b-256 cdb732e3732481ab6b5c7b3454226568675a5379f0dcb9696c6a12f8edb1139b

See more details on using hashes here.

File details

Details for the file mavis-2.2.8-py2.py3-none-any.whl.

File metadata

  • Download URL: mavis-2.2.8-py2.py3-none-any.whl
  • Upload date:
  • Size: 350.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.7.2

File hashes

Hashes for mavis-2.2.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d2437fabd486437710b326f40999e6e1a398fd5fce97eda58e4a5f1b14fd8c5b
MD5 18aace5e2cc70e0cf5e2f6423e4aff69
BLAKE2b-256 c0c0e4e49eef664cf6fa49a8537ecb04bb77816c24339d58787fa02e704e8721

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page