Skip to main content

Maxim Python Library

Project description

Maxim SDK

This is Python SDK for enabling Maxim observability. Maxim is an enterprise grade evaluation and observability platform.

How to integrate

Install

pip install maxim-py

Initialize Maxim logger

from maxim.maxim import Maxim

maxim = Maxim(Config(apiKey=apiKey))

Start sending traces

from maxim.logger.logger import LoggerConfig
# Initializing logger
logger = maxim.logger(LoggerConfig(id="log-repository-id"))
# Initializing a new trace
trace = logger.trace(TraceConfig(id="trace-id",name="trace-name",tags={"key":"value"}))
# Creating the generation
generation = trace.generation(GenerationConfig(id=str(uuid4()), model="text-davinci-002", provider="azure", model_parameters={"temperature": 0.7, "max_tokens": 100}))
# Making LLM call
completion = self.client.completions.create(
   model="text-davinci-002",
   prompt="Translate the following English text to French: 'Hello, how are you?'",
   max_tokens=100,
   temperature=0.7
)
# Updating generation
generation.result(completion)
# Ending trace
trace.end()

Integrations with other frameworks

Langchain

We have built in Langchain tracer support

logger = self.maxim.logger(LoggerConfig(id=repoId))
trace_id = str(uuid4())
trace = logger.trace(TraceConfig(
   id=trace_id, name="pre-defined-trace"))

model = OpenAI(callbacks=[MaximLangchainTracer(logger)],api_key=openAIKey)
messages = [
   (
         "system",
         "You are a helpful assistant that translates English to French. Translate the user sentence.",
   ),
   ("human", "I love programming."),
]
model.invoke(messages, config={
   "metadata": {
         "maxim": {
            "trace_id": trace_id,
            "generation_name": "get-answer",
            "generation_tags": {
               "test": "123"
            }
         }
   }
})
trace.event(id=str(uuid4()), name="test event")
trace.end()

Langchain module compatibility

Anthropic Bedrock Anthropic Bedrock Meta OpenAI Azure
Chat (0.3.x)
Chat (0.1.x)
Tool call (0.3.x)
Tool call (0.1.x)
Chain (via LLM) (0.3.x)
Chain (via LLM) (0.1.x)
Streaming (0.3.x) ✳️ Token usage is not supported by Langchain
Streaming (0.1.x) Token usage is not supported by Langchain ✳️ ✳️ ✳️ ✳️ ✳️
Agent (0.3.x) ⛔️ ⛔️ ⛔️ ⛔️ ⛔️
Agent (0.1.x) ⛔️ ⛔️ ⛔️ ⛔️ ⛔️

Please reach out to us if you need support for any other package + provider + classes.

Version changelog

v1.5.7

  • Feature - Supports 0.1.x langchain

v1.5.6

  • Improvement - Improved langchain support

v1.5.5

  • Improvement - Improves cleanups for log writer for quick returns.

v1.5.4

  • Improvement - Improved fs access checks.
  • Improvement - Fixes threading locks for periodic syncs in Python3.9

v1.5.3

  • Improvement - Adds lambda env support for SDK with no access to filesystem.

v1.5.2

  • Feature - Adds support to new langchain_openai.AzureChatOpenAI class in langchain tracer

v1.5.1

  • Fix - Adds Python 3.9 compatibility

v1.5.0

  • Improvement - Updates connection pool to use session that enforces re-connects before making API calls.

v1.4.5

  • Improvement - Adds backoff retries to failed REST calls.

v1.4.4

  • Improvement - langchain becomes optional dependency

v1.4.3

  • Fix - connection pooling for network calls.
  • Fix - connection close issue.

v1.4.2 (🚧 Yanked)

  • Fix - connection close issue

v1.4.1

  • Adds validation for provider in generation

v1.4.0

  • Now generation.result accepts
    • OpenAI chat completion object
    • Azure OpenAI chat completion object
    • Langchain LLMResult, AIMessage object

v1.3.4

  • Fixes message_parser

v1.3.2

  • Fixes utility function for langchain to parse AIMessage into Maxim logger completion result

v1.3.1

  • Adds tool call parsing support for Langchain tracer

v1.3.0

  • Adds support for ChatCompletion in generations
  • Adds type safety for retrieval results

v1.2.7

  • Bug fix where input sent with trace.config was getting overridden with None

v1.2.6

  • Adds trace.set_input and trace.set_output methods to control what to show in logs dashboard

v1.2.5

  • Removes one no_op command while creating spans
  • Minor bug fixes

v1.2.1

  • Fixed MaximLangchainTracer error logging flow.

v1.2.0

  • Adds langchain support
  • Adds local parsers to validate payloads on client side

v1.1.0

  • Minor bug fixes around log writer cleanup

v1.0.0

  • Public release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maxim_py-1.5.7.tar.gz (29.9 kB view details)

Uploaded Source

Built Distribution

maxim_py-1.5.7-py3-none-any.whl (37.6 kB view details)

Uploaded Python 3

File details

Details for the file maxim_py-1.5.7.tar.gz.

File metadata

  • Download URL: maxim_py-1.5.7.tar.gz
  • Upload date:
  • Size: 29.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for maxim_py-1.5.7.tar.gz
Algorithm Hash digest
SHA256 c65627bd920072bc3f87354b9d42a19396f303d9359786bf1c02748a3e369499
MD5 d7007a6906f5cf9b0b729ba09b2e55d5
BLAKE2b-256 dc0abd79bfca38d1c6622ef7c2d8dff288822edcc39fc7bbc0cbe46628cf2a0a

See more details on using hashes here.

File details

Details for the file maxim_py-1.5.7-py3-none-any.whl.

File metadata

  • Download URL: maxim_py-1.5.7-py3-none-any.whl
  • Upload date:
  • Size: 37.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for maxim_py-1.5.7-py3-none-any.whl
Algorithm Hash digest
SHA256 171f520958230a3920dda1bbcc7645876d2b10da7348f25b855ef05a27778049
MD5 733a6d81bc03f8d8c5f73de0dace4549
BLAKE2b-256 eff4cf934f11b0c5894a593adc2247326e1c814b56dc1ea44294caac6c11ccbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page