Multi-layer Approximate Computing Python Framework
Project description
MAxPy Multi-layer Approximate Computing Python Framework
MAxPy is a framework aimed for simulation and exploration of Approximate Computing techniques in VLSI designs. It is Ptyhon-based, free and open-source.
Check out our documentation!
MAxPy is part of the MAxPy Project.
Installation
pip install MAxPy
Examples
Basic flow
RTL-level
from MAxPy import maxpy
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.rtl2py(target="exact")
Gate-level
from MAxPy import maxpy
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.set_synth_tool("yosys")
circuit.rtl2py(target="exact_yosys")
Parameter exploration
from MAxPy import maxpy
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.set_group("study_no_1")
circuit.set_synth_tool(None)
circuit.set_results_filename("output.csv")
circuit.parameters = {
"[[PARAM_ADDER01]]": ["copyA","copyB", "eta1", "loa", "trunc0", "trunc1"],
"[[PARAM_K]]": ["0", "1", "2", "3"],
}
circuit.rtl2py_param_loop(base="rtl_param")
Probabilist pruning
from MAxPy import maxpy
from MAxPy import probprun
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.set_synth_tool("yosys")
pareto_circuits = circuit.get_pareto_front("area", "mre")
probprun.probprun_loop(circuit, pareto_circuits)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
maxpy-0.1.2.tar.gz
(645.9 kB
view details)
Built Distribution
MAxPy-0.1.2-py3-none-any.whl
(655.7 kB
view details)
File details
Details for the file maxpy-0.1.2.tar.gz
.
File metadata
- Download URL: maxpy-0.1.2.tar.gz
- Upload date:
- Size: 645.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 21bb61a9e9c438a2dc268777360661710125b4292f6edc37ec9d04f23ab7767e |
|
MD5 | 647315ee321aa9429d757246f1be76c4 |
|
BLAKE2b-256 | 12c85d3cf48a856b6b43cd4be461c90e85715a646618d3376316641a49e61180 |
File details
Details for the file MAxPy-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: MAxPy-0.1.2-py3-none-any.whl
- Upload date:
- Size: 655.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ccdff906a87f0217c24757643fbed4d99e93d2c8680a5318698bd32bd56c4cd |
|
MD5 | 78d12322107ff61482aec69f97059eb2 |
|
BLAKE2b-256 | 6a068a08101487afdf3dd118e65d169112a8f5946fec2d898077084db243e8fc |