Skip to main content

Multi-layer Approximate Computing Python Framework

Project description

MAxPy Multi-layer Approximate Computing Python Framework

MAxPy is a framework aimed for simulation and exploration of Approximate Computing techniques in VLSI designs. It is Ptyhon-based, free and open-source.

Check out our documentation!

MAxPy is part of the MAxPy Project.

Installation

pip install MAxPy

Examples

Basic flow

RTL-level

from MAxPy import maxpy
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.rtl2py(target="exact")

Gate-level

from MAxPy import maxpy
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.set_synth_tool("yosys")
circuit.rtl2py(target="exact_yosys")

Parameter exploration

from MAxPy import maxpy
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.set_group("study_no_1")
circuit.set_synth_tool(None)
circuit.set_results_filename("output.csv")
circuit.parameters = {
"[[PARAM_ADDER01]]": ["copyA","copyB", "eta1", "loa", "trunc0", "trunc1"],
"[[PARAM_K]]": ["0", "1", "2", "3"],
}
circuit.rtl2py_param_loop(base="rtl_param")

Probabilist pruning

from MAxPy import maxpy
from MAxPy import probprun
from testbench import testbench_run
circuit = maxpy.AxCircuit(top_name="adder4")
circuit.set_testbench_script(testbench_run)
circuit.set_synth_tool("yosys")
pareto_circuits = circuit.get_pareto_front("area", "mre")
probprun.probprun_loop(circuit, pareto_circuits)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maxpy-0.1.2.tar.gz (645.9 kB view details)

Uploaded Source

Built Distribution

MAxPy-0.1.2-py3-none-any.whl (655.7 kB view details)

Uploaded Python 3

File details

Details for the file maxpy-0.1.2.tar.gz.

File metadata

  • Download URL: maxpy-0.1.2.tar.gz
  • Upload date:
  • Size: 645.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for maxpy-0.1.2.tar.gz
Algorithm Hash digest
SHA256 21bb61a9e9c438a2dc268777360661710125b4292f6edc37ec9d04f23ab7767e
MD5 647315ee321aa9429d757246f1be76c4
BLAKE2b-256 12c85d3cf48a856b6b43cd4be461c90e85715a646618d3376316641a49e61180

See more details on using hashes here.

File details

Details for the file MAxPy-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: MAxPy-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 655.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for MAxPy-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0ccdff906a87f0217c24757643fbed4d99e93d2c8680a5318698bd32bd56c4cd
MD5 78d12322107ff61482aec69f97059eb2
BLAKE2b-256 6a068a08101487afdf3dd118e65d169112a8f5946fec2d898077084db243e8fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page