Skip to main content

MazeRL is a development framework for building applied reinforcement learning systems, addressing real-world decision problems. It supports the complete development life cycle of RL applications, ranging from simulation engineering up to agent development, training and deployment.

Project description

Banner
Language grade: Python PyPI PyPI - Python Version Maze Docker Image Read the Docs contributions welcome

Applied Reinforcement Learning with Python

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ranging from simulation engineering up to agent development, training and deployment.

This is a preliminary, non-stable release of Maze. It is not yet complete and not all of our interfaces have settled yet. Hence, there might be some breaking changes on our way towards the first stable release.

Spotlight Features

Below we list a few selected Maze features.

  • Design and visualize your policy and value networks with the Perception Module. It is based on PyTorch and provides a large variety of neural network building blocks and model styles. Quickly compose powerful representation learners from building blocks such as: dense, convolution, graph convolution and attention, recurrent architectures, action- and observation masking, self-attention etc.
  • Create the conditions for efficient RL training without writing boiler plate code, e.g. by supporting best practices like pre-processing and normalizing your observations.
  • Maze supports advanced environment structures reflecting the requirements of real-world industrial decision problems such as multi-step and multi-agent scenarios. You can of course work with existing Gym-compatible environments.
  • Use the provided Maze trainers (A2C, PPO, Impala, SAC, Evolution Strategies), which are supporting dictionary action and observation spaces as well as multi-step (auto-regressive policies) training. Or stick to your favorite tools and trainers by combining Maze with other RL frameworks.
  • Out of the box support for advanced training workflows such as imitation learning from teacher policies and policy fine-tuning.
  • Keep even complex application and experiment configuration manageable with the Hydra Config System.

Get Started

  • Make sure PyTorch is installed and then get the latest released version of Maze as follows:

    pip install -U maze-rl
    

    Read more about other options like the installation of the latest development version.

    :zap: We encourage you to start with Python 3.7, as many popular environments like Atari or Box2D can not easily be installed in newer Python environments. Maze itself supports newer Python versions, but for Python 3.9 you might have to install additional binary dependencies manually

  • Alternatively you can work with Maze in a Docker container with pre-installed Jupyter lab: Run docker run -p 8888:8888 enliteai/maze:playground and open localhost:8888 in your browser. This loads Jupyter

  • To see Maze in action, check out a first example.

  • Try your own Gym env or visit our Maze step-by-step tutorial.

Pip
Installation
First Example
First Example
Tutorial
Step by Step Tutorial
Documentation
Documentation

Learn more about Maze

The documentation is the starting point to learn more about the underlying concepts, but most importantly also provides code snippets and minimum working examples to get you started quickly.

License

Maze is freely available for research and non-commercial use. A commercial license is available, if interested please contact us on our company website or write us an email.

We believe in Open Source principles and aim at transitioning Maze to a commercial Open Source project, releasing larger parts of the framework under a permissive license in the near future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

maze_rl-0.2.0-py3-none-any.whl (599.0 kB view details)

Uploaded Python 3

File details

Details for the file maze_rl-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: maze_rl-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 599.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.12

File hashes

Hashes for maze_rl-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1d355dca06c38a12e92eed9bc2af8a2c4432f686c9dccb3132090e6a73e05023
MD5 e08bf80e85e10f351a4cf946b799c127
BLAKE2b-256 d5a3e0026bf7861918ddba3462c8e56b69da44a4d34b849ee89925d754100261

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page