Skip to main content

Package to apply MCR-ALS with or without Chan-vese constraint on CARS images

Project description

MC2S

MC2S provides a script to apply MCR-ALS and projection using least squares regression based on CARS data package.

Datasets

Datasets can be provided on request at damien.boildieu@xlim.fr

Usage

To launch the main script :

carsdata

You can also provide directly the configuration file with :

carsdata -j path/to/configuration/file.json

Configuration files are in JSon format, examples of configuration are available in the configs folder. Configuration attributes are the same as objects constructors in the source code. Hence, mc2.json contains:

{
  "data" : ["Path/to/file"],
  "analyzer" : 
  {
      "MCR" :
      {
        "output_dim" : 5,
        "guesser" :
        {
          "Simplisma" :
          {
            "simp_err" : 5
          }
        },
        "c_regr" : 
        {
          "NNLS" : {}
        },
        "c_constr" : 
        {
          "ChanVeseConstraint":
          {
          "nu": 0,
          "lambda1": 1,
          "lambda2": 1,
          "mu": 0.35
          },
          "NormConstraint" :
          {
            "axis" : 1
          }
        },
        "st_regr" : 
        {
          "NNLS" : {}
        },
        "st_constr" : {}
      }
  },
  "vspan" : [
    {
      "begin" : 3180,
      "end" : 3200,
      "color" : "cyan"
    },
    {
      "begin" : 3046,
      "end" : 3066,
      "color" : "green"
    },
    {
      "begin" : 2997,
      "end" : 3017,
      "color" : "red"
    },
    {
      "begin" : 2910,
      "end" : 2930,
      "color" : "green"
    },
    {
      "begin" : 2834,
      "end" : 2854,
      "color" : "red"
    }
  ],
  "spectra_colors" : [
    "darkmagenta",
    "mediumvioletred",
    "navy",
    "teal",
    "saddlebrown"
  ]
}

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mc2s-0.1.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

mc2s-0.1-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file mc2s-0.1.tar.gz.

File metadata

  • Download URL: mc2s-0.1.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for mc2s-0.1.tar.gz
Algorithm Hash digest
SHA256 f105b41a736998c83a4f73c65461817936384b26a0eedd1a514d45ceeedbba7b
MD5 ab525d0b92e1c8114e33c6b3ca9d0d3a
BLAKE2b-256 cea0ead23364c71339e862639a201cf0a997647c79e10a5eb1787e0461e325bb

See more details on using hashes here.

File details

Details for the file mc2s-0.1-py3-none-any.whl.

File metadata

  • Download URL: mc2s-0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for mc2s-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fd8399215671b671348406acda24e4b8f6f8c75b693456f1e1be44f879de7c7d
MD5 d0552d1c0c2e7ffab62cb2c006c62879
BLAKE2b-256 5b7129771e48e8770310af58ea96ae04892d7161d1751c6d0a4929398994a9b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page