Skip to main content

MCCNN is a neural network for learning a similarity measure on image patches

Project description

MCCNN

MCCNN neural network for stereo matching cost.

OverviewInstallUsagePretrained Weights for MCCNN networksRelatedReferences

Overview

Pytorch implementation of [MCCNN] neural network which computes a similarity measure on pair of small image patches.

Install from Pypi

MCCNN is available on Pypi and can be installed by:

pip install MCCNN

Developer install

After cloning source code from repository, do a local pip install in a virtualenv through MCCNN Makefile:

make install

Usage

Documentation explains how to train and use MCCNN convolutional neural network. To generate it, please execute the following commands:

make docs

Let's see pandora_plugin_mccnn for real life example.

Pretrained Weights for MCCNN networks

Download weights files

Pretrained weights for mc-cnn fast and mc-cnn accurate neural networks are available in the weights directory :

  • mc_cnn_fast_mb_weights.pt and mc_cnn_accurate_mb_weights.pt are the weights of the pretrained networks on the Middlebury dataset [Middlebury]
  • mc_cnn_fast_data_fusion_contest.pt and mc_cnn_accurate_data_fusion_contest.pt are the weights of the pretrained networks on the Data Fusion Contest dataset [DFC]

To download the pretrained weights:

wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_fast_mb_weights.pt
wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_fast_data_fusion_contest.pt
wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_accurate_mb_weights.pt
wget https://raw.githubusercontent.com/CNES/Pandora_MCCNN/master/mc_cnn/weights/mc_cnn_accurate_data_fusion_contest.pt

Access weights from pip package

Pretrained weights are stored into the pip package and downloaded for any installation of mc_cnn pip package. To access it, use the weights submodule :

from mc_cnn.weights import get_weights
mc_cnn_fast_mb_weights_path = get_weights(arch="fast", training_dataset="middlebury")
mc_cnn_fast_data_fusion_contest_path = get_weights(arch="fast", training_dataset="dfc")
mc_cnn_accurate_mb_weights_path = get_weights(arch="accurate", training_dataset="middlebury")
mc_cnn_accurate_data_fusion_contest = get_weights(arch="accurate", training_dataset="dfc")

References

Please cite the following paper when using MCCNN:

Defonte, V., Dumas, L., Cournet, M., & Sarrazin, E. (2021, July). Evaluation of MC-CNN Based Stereo Matching Pipeline for the CO3D Earth Observation Program. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 7670-7673). IEEE.

Cournet, M., Sarrazin, E., Dumas, L., Michel, J., Guinet, J., Youssefi, D., Defonte, V., Fardet, Q., 2020. Ground-truth generation and disparity estimation for optical satellite imagery. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[MCCNN] Zbontar, J., & LeCun, Y. (2016). Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res., 17(1), 2287-2318.

[Middlebury] Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., & Westling, P. (2014, September). High-resolution stereo datasets with subpixel-accurate ground truth. In German conference on pattern recognition (pp. 31-42). Springer, Cham.

[DFC] Bosch, M., Foster, K., Christie, G., Wang, S., Hager, G. D., & Brown, M. (2019, January). Semantic stereo for incidental satellite images. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1524-1532). IEEE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mccnn-1.2.4.tar.gz (14.7 MB view details)

Uploaded Source

File details

Details for the file mccnn-1.2.4.tar.gz.

File metadata

  • Download URL: mccnn-1.2.4.tar.gz
  • Upload date:
  • Size: 14.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for mccnn-1.2.4.tar.gz
Algorithm Hash digest
SHA256 2dd98c451d8990b7a921aeebff8903abaf04d95314370979c2d572f63346f6e7
MD5 12c43d5293eecc622c3cddccce3d2c49
BLAKE2b-256 31bd78a1d6ff2f8ba618b3e178ad399716a8dd0778446d2e07e5d1fca8fc1554

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page