Skip to main content

A simple tool to perform numerical integration using Monte Carlo techniques.

Project description

========================
Monte Carlo integrator
========================

This package provides a Monte Carlo integrator which can be used to evaluate
multi-dimensional integrals. The results are numerical approximations which are
dependent on the use of random number generation.

Example 1 (computing :math:`\int_0^1 x^2 dx`)::

import mcint
import random

def integrand(x): # Describe the function being integrated
return (x**2)

def sampler(): # Describe how Monte Carlo samples are taken
while True:
yield random.random()

result, error = mcint.integrate(integrand, sampler(), measure=1.0, n=100)

print "The integral of x**2 between 0 and 1 is approximately", result

Example 2 (computing :math:`\int_0^1 \int_0^\sqrt{1-y^2} x^2+y^2 dx dy`)::

import mcint
import random
import math

def integrand(x):
return (x[0]**2 + x[1]**2)

def sampler():
while True:
y = random.random()
x = random.random()
if x**2+y**2 <= 1:
yield (x,y)

result, error = mcint.integrate(integrand, sampler(), measure=math.pi/4)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for mcint, version 0.1dev4
Filename, size File type Python version Upload date Hashes
Filename, size mcint-0.1dev4.zip (2.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page