A simple tool to perform numerical integration using Monte Carlo techniques.

## Project description

========================
Monte Carlo integrator
========================

This package provides a Monte Carlo integrator which can be used to evaluate
multi-dimensional integrals. The results are numerical approximations which are
dependent on the use of random number generation.

Example 1 (computing :math:\int_0^1 x^2 dx)::

import mcint
import random

def integrand(x): # Describe the function being integrated
return (x**2)

def sampler(): # Describe how Monte Carlo samples are taken
while True:
yield random.random()

result, error = mcint.integrate(integrand, sampler(), measure=1.0, n=100)

print "The integral of x**2 between 0 and 1 is approximately", result

Example 2 (computing :math:\int_0^1 \int_0^\sqrt{1-y^2} x^2+y^2 dx dy)::

import mcint
import random
import math

def integrand(x):
return (x[0]**2 + x[1]**2)

def sampler():
while True:
y = random.random()
x = random.random()
if x**2+y**2 <= 1:
yield (x,y)

result, error = mcint.integrate(integrand, sampler(), measure=math.pi/4)

## Project details

### Source Distribution

mcint-0.1dev4.zip (2.9 kB view hashes)

Uploaded source