Skip to main content

Markov Decision Process

Project description

Markov Decision Process

Markov Decision Process

  • Markov Decision Process

Installation

pip install md-pro

Usage

    ##################
    ### Parameters ###
    ##################
    parser = argparse.ArgumentParser()
    parser.add_argument('--sample_time', '-Ts', type=float, help='Ts=0.1',
                        default='0.1', required=False)
    parser.add_argument('--gamma', '-gam', type=float, help='gamma=0.9',
                        default='0.9', required=False)
    parser.add_argument('--x_grid', '-xgr', type=int, help='x_grid=5',
                        default='8', required=False)
    parser.add_argument('--y_grid', '-ygr', type=int, help='y_grid=5',
                        default='5', required=False)
    parser.add_argument('--n_optimal', '-nopt', type=int, help='n_optimal=5',
                        default='5', required=False)
    args = parser.parse_args()
    params = vars(args)
    ####################################################
    ### Challenge with Markov Decision Process (MDP) ###
    ####################################################
    #start point
    strt_pnt='0'
    # points
    P=get_meshgrid_points(params)
    # Topology
    T, S = get_simple_topology_for_regular_grid(params, P)
    # rewards
    R = {'35': 100}
    mdp_challenge = {'S': S, 'R': R, 'T': T, 'P': P}

    dict_mdp=start_mdp(params, mdp_challenge)
    reach_set=reach_n_steps(strt_pnt, mdp_challenge, dict_mdp, params, steps=8)
    optimal_traj=get_trajectory(strt_pnt, dict_mdp, reach_set)
    plot_the_result(dict_mdp, mdp_challenge)

... should produce:

Citation

Please cite following document if you use this python package:

TODO

Image source: https://www.pexels.com/photo/photo-of-black-and-beige-wooden-chess-pieces-with-white-background-1083355/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

md_pro-0.0.13.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

md_pro-0.0.13-py3-none-any.whl (26.4 kB view details)

Uploaded Python 3

File details

Details for the file md_pro-0.0.13.tar.gz.

File metadata

  • Download URL: md_pro-0.0.13.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9

File hashes

Hashes for md_pro-0.0.13.tar.gz
Algorithm Hash digest
SHA256 22a269fe8705c9ed27ddb93d609df386ae1d58fd0d2683023129b8b633c867c8
MD5 6c9533a7148daaad8013b2c7fd5ed141
BLAKE2b-256 98cc1f89f03f9a8dbe0f19549d8dd6236bbb146d19fede3c597ea406dba39f01

See more details on using hashes here.

File details

Details for the file md_pro-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: md_pro-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 26.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9

File hashes

Hashes for md_pro-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 7fa3ccefaeaac5c2ecff5b55072007ecea9c5cc117c852081f746a40665a6300
MD5 8530efb2e32d3f3720658d1508207eef
BLAKE2b-256 2a21ad0ffce485ae4a1d51615292f729c8edb4f6c761184e415ab53a9397cc8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page