Markov Decision Process
Project description
Markov Decision Process
Markov Decision Process
- Markov Decision Process
Installation
pip install md-pro
Usage
##################
### Parameters ###
##################
parser = argparse.ArgumentParser()
parser.add_argument('--sample_time', '-Ts', type=float, help='Ts=0.1',
default='0.1', required=False)
parser.add_argument('--gamma', '-gam', type=float, help='gamma=0.9',
default='0.9', required=False)
parser.add_argument('--x_grid', '-xgr', type=int, help='x_grid=5',
default='8', required=False)
parser.add_argument('--y_grid', '-ygr', type=int, help='y_grid=5',
default='5', required=False)
parser.add_argument('--n_optimal', '-nopt', type=int, help='n_optimal=5',
default='5', required=False)
args = parser.parse_args()
params = vars(args)
####################################################
### Challenge with Markov Decision Process (MDP) ###
####################################################
#start point
strt_pnt='0'
# points
P=get_meshgrid_points(params)
# Topology
T, S = get_simple_topology_for_regular_grid(params, P)
# rewards
R = {'35': 100}
mdp_challenge = {'S': S, 'R': R, 'T': T, 'P': P}
dict_mdp=start_mdp(params, mdp_challenge)
reach_set=reach_n_steps(strt_pnt, mdp_challenge, dict_mdp, params, steps=8)
optimal_traj=get_trajectory(strt_pnt, dict_mdp, reach_set)
plot_the_result(dict_mdp, mdp_challenge)
... should produce:
Citation
Please cite following document if you use this python package:
TODO
Image source: https://www.pexels.com/photo/photo-of-black-and-beige-wooden-chess-pieces-with-white-background-1083355/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
md_pro-0.0.13.tar.gz
(10.6 kB
view details)
Built Distribution
md_pro-0.0.13-py3-none-any.whl
(26.4 kB
view details)
File details
Details for the file md_pro-0.0.13.tar.gz
.
File metadata
- Download URL: md_pro-0.0.13.tar.gz
- Upload date:
- Size: 10.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22a269fe8705c9ed27ddb93d609df386ae1d58fd0d2683023129b8b633c867c8 |
|
MD5 | 6c9533a7148daaad8013b2c7fd5ed141 |
|
BLAKE2b-256 | 98cc1f89f03f9a8dbe0f19549d8dd6236bbb146d19fede3c597ea406dba39f01 |
File details
Details for the file md_pro-0.0.13-py3-none-any.whl
.
File metadata
- Download URL: md_pro-0.0.13-py3-none-any.whl
- Upload date:
- Size: 26.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fa3ccefaeaac5c2ecff5b55072007ecea9c5cc117c852081f746a40665a6300 |
|
MD5 | 8530efb2e32d3f3720658d1508207eef |
|
BLAKE2b-256 | 2a21ad0ffce485ae4a1d51615292f729c8edb4f6c761184e415ab53a9397cc8c |