Skip to main content

A simple, fast and cross-platform python library to handle the data generated from molecular dynamics simulations.

Project description

https://img.pterclub.com/images/2023/01/06/logo.png

mdapy : Molecular Dynamics Analysis with Python

Overview

The mdapy python library provides an array of powerful, flexible, and straightforward tools to analyze atomic trajectories generated from Molecular Dynamics (MD) simulations. The library is fully cross-platform, making it accessible to users in Windows, Linux, and Mac OS. Benefited by the TaiChi project, we can effectively accelerate the pure python code, bringing it closer to the speed of code written in C++. Furthermore, mdapy is highly parallelized, allowing users to leverage the resources of both multicore CPU and GPU. mdapy can directly handle the DUMP and DATA formats in LAMMPS, POSCAR format in VASP, universal XYZ format and CIF format. Besides, all data in mdapy is stored in NDARRAY format in NumPy, which enables easy integration with the scientific ecosystem in python and facilitates collaboration with other post-progressing tools such as OVITO and freud.

Resources

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mdapy-0.11.4.tar.gz (588.4 kB view details)

Uploaded Source

Built Distributions

mdapy-0.11.4-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

mdapy-0.11.4-cp311-cp311-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mdapy-0.11.4-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

mdapy-0.11.4-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mdapy-0.11.4-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

mdapy-0.11.4-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mdapy-0.11.4-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

mdapy-0.11.4-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file mdapy-0.11.4.tar.gz.

File metadata

  • Download URL: mdapy-0.11.4.tar.gz
  • Upload date:
  • Size: 588.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.0

File hashes

Hashes for mdapy-0.11.4.tar.gz
Algorithm Hash digest
SHA256 acaa40f66ed288b834d92a059ba39cd8e2a33c6242b596e8d0338d1c84f9d0e8
MD5 6cae11eec23cb0e31f0f459d6fe8256d
BLAKE2b-256 aaf1455ea0ca06ce69951b3401ff0d85ae166a74b33b325a30486168122f551b

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mdapy-0.11.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.0

File hashes

Hashes for mdapy-0.11.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1427e1552860380ac3146d1fa9e6677204572aa6e275bfed535acf6e13ff91ca
MD5 fbca3026a588283158da5ae682a6f35f
BLAKE2b-256 278c1438dcc1279dd65261e254f6fb4aa5d489ed90c54837f94d663aad646601

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mdapy-0.11.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4066fb1e8c553b23d711447991f3215f7d763ceee8a7d17a43648c0a03a7e51f
MD5 57b177da651859e9e1d5f4a577ecb278
BLAKE2b-256 22c87ff7d841eeb88d0a99261f65f06c1a5155c28a84cae0b6c36a9290b9d19c

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mdapy-0.11.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.0

File hashes

Hashes for mdapy-0.11.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9606a680f456a4005e8fe1c9d6cd11193140e880698b240b504345ab4ce4f1f7
MD5 dd6c5e086db864dcf3aeded9e400e48a
BLAKE2b-256 f577d98243841287d84404f1c1bc97808115072e1d599b4ecc3c476230e57a82

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mdapy-0.11.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5a54b238a49cc703ade6182332a7e4a9532fae5212d581ce91af2b55532e1b2
MD5 fe5aa5cee4c8bb476185ec3405ad68b7
BLAKE2b-256 c950445fc5adc25ed2582c3726e4d6ab1ba9691cc4712a2e1e8fc3eb53a76b32

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mdapy-0.11.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.0

File hashes

Hashes for mdapy-0.11.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5097e36095b5e0144bfddc08c2ed09d1233400af36df991be8e7f57bf8e5e495
MD5 509c94ced949f57f698de598fec625a4
BLAKE2b-256 fc84c112e50f035db40ea9f84ac190b4a3dff369e6f1aea0284f3322bdec06a8

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mdapy-0.11.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81c8722d199ea5ff954c68d2274be9fea66432ab33829b26a35f0aa2ef160463
MD5 de8f3f4e9f5b0c55a7cd496be835e4f0
BLAKE2b-256 4e5fd83779365930b5b09a45ea485a06396cf8d389b7c5f54c1997036eb49154

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: mdapy-0.11.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.0

File hashes

Hashes for mdapy-0.11.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3f81665dd51aa78a160a9431c4cab401bc5a6c5739ac21c95969c3cab63c8349
MD5 7c39ac243e23bbdc33c8dc7684ea5d41
BLAKE2b-256 c12f2afe87de089bbc9bd41caaab530e5a54fef02fa5b05b895bea50ec227a5e

See more details on using hashes here.

File details

Details for the file mdapy-0.11.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mdapy-0.11.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7ef7d5e8fa3fc59335da005c4065bfc15ab2209342ac667907454ed5221fa011
MD5 935d8db83780d0290ece9643408265fe
BLAKE2b-256 2628d5d05eef283ddfdf839943428a8208a15f43b4889639bd9a060008ab74c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page