mdatagen: A Python Library for the Generation of Artificial Missing Data
Project description
mdatagen: A Python Library for the Generation of Artificial Missing Data
Overview
This package has been developed to address a gap in machine learning research, specifically the artificial generation of missing data. Santos et al. (2019) provided a survey that presents various strategies for both univariate and multivariate scenarios, but the Python community still needs implementations of these strategies. Our Python library missing-data-generator (mdatagen) puts forward a comprehensive set of implementations of missing data mechanisms, covering Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR), allowing users to simulate several real-world scenarios comprising absent observations. The library is designed for easy integration with existing Python-based data analysis workflows, including well-established modules such as scikit-learn, and popular libraries for missing data visualization, such as missingno, enhancing its accessibility and usability for researchers.
This Python package is a collaboration between researchers at the Aeronautics Institute of Technologies (Brazil) and the University of Coimbra (Portugal).
User Guide
Please refer to the univariate docs or multivariate docs for more implementatios details.
Installation
To install the package, please use the pip
installation as follows:
pip install mdatagen
API Usage
API usage is described in each of the following sections
- MCAR univariate example
- MNAR univariate example
- MAR univariate example
- MNAR Multivariate Examples
- Novel MNAR Multivariate mechanism
- Evaluation of Imputation Quality
- Visualization Plots
- Complete Pipeline Example
Code examples
Here, we provide a basic usage for MAR mechanism in both univariate and multivariate scenarios to getting started. Also, we illustrate how to use the Histogram plot and evaluate the imputation quality.
MAR univariate
import pandas as pd
from sklearn.datasets import load_iris
from mdatagen.univariate.uMAR import uMAR
# Load the data
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data,
columns=iris.feature_names)
X = iris_df.copy() # Features
y = iris.target # Label values
generator = uMAR(X=X,
y=y,
missing_rate=50,
x_miss='sepal length (cm)',
x_obs = 'petal lenght (cm)')
# Generate the missing data under MAR mechanism univariate
generate_data = generator.rank()
print(generate_data.isna().sum())
MAR multivariate
import pandas as pd
from sklearn.datasets import load_iris
from mdatagen.multivariate.mMAR import mMAR
# Load the data
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data,
columns=iris.feature_names)
X = iris_df.copy() # Features
y = iris.target # Label values
generator = mMAR(X=X,
y=y)
# Generate the missing data under MAR mechanism multivariate
generate_data = generator.correlated(missing_rate=25)
print(generate_data.isna().sum())
Histogram plot
import pandas as pd
from sklearn.datasets import load_iris
from mdatagen.univariate.uMCAR import uMCAR
from mdatagen.plots.plot import PlotMissingData
# Load the data
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data,
columns=iris.feature_names)
X = iris_df.copy() # Features
y = iris.target # Label values
# Create a instance with missing rate
# equal to 25% in dataset under MCAR mechanism
generator = uMCAR(X=X,
y=y,
missing_rate=25,
x_miss='petal length (cm)')
# Generate the missing data under MNAR mechanism
generate_data = generator.random()
miss_plot = PlotMissingData(data_missing=generate_data,
data_original=X
)
miss_plot.visualize_miss("histogram",
col_missing="petal length (cm)",
save=True,
path_save_fig = "MCAR_iris.png")
Imputation Quality Evaluation: Mean Squared Error (MSE)
import pandas as pd
from sklearn.datasets import load_iris
from mdatagen.univariate.uMCAR import uMCAR
from mdatagen.metrics.metrics import EvaluateImputation
# Load the data
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data,
columns=iris.feature_names)
X = iris_df.copy() # Features
y = iris.target # Label values
# Create a instance with missing rate
# equal to 25% in dataset under MCAR mechanism
generator = uMCAR(X=X,
y=y,
missing_rate=25,
x_miss='petal length (cm)')
# Generate the missing data under MNAR mechanism
generate_data = generator.random()
# Calculate the metric: MSE
fill_zero = generate_data.drop("target",axis=1).fillna(0)
eval_metric = EvaluateImputation(
data_imputed=fill_zero,
data_original=X,
metric="mean_squared_error")
print(eval_metric.show())
Contribuitions
Contributions are welcome! Feel free to open issues, submit pull requests, or provide feedback.
Citation
If you use mdatagen in your research, please cite the original paper
Bibtex entry:
@ARTICLE{Santos2019,
author={Santos, Miriam Seoane and Pereira, Ricardo Cardoso and Costa, Adriana Fonseca and Soares, Jastin Pompeu and Santos, João and Abreu, Pedro Henriques},
journal={IEEE Access},
title={Generating Synthetic Missing Data: A Review by Missing Mechanism},
year={2019},
volume={7},
number={},
pages={11651-11667},
doi={10.1109/ACCESS.2019.2891360}}
Acknowledgements
The authors gratefully acknowledge the Brazilian funding agencies FAPESP (Fundação Amparo à Pesquisa do Estado de São Paulo) under grants 2022/10553-6, 2023/13688-2, and 2021/06870-3. Moreover, this research was supported in part by the Coordenação de Aperfeiçoamento de Pessoalde Nível Superior - Brasil (CAPES) - Finance Code 001, and Portuguese Recovery and Resilience Plan (PRR) through project C645008882-00000055 Center for Responsable AI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mdatagen-0.1.63.tar.gz
.
File metadata
- Download URL: mdatagen-0.1.63.tar.gz
- Upload date:
- Size: 22.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72c08473fe21ee9bd06fee7fd24fc08cadc791985510ee807eb41fadb02b2541 |
|
MD5 | 6a68ba8f523a3c8e1b05c8af45837e7e |
|
BLAKE2b-256 | 2b5292b8c3faaf8eccaa9f729c791ff0c942bb851773cb8d80edf1b130ee9638 |
File details
Details for the file mdatagen-0.1.63-py3-none-any.whl
.
File metadata
- Download URL: mdatagen-0.1.63-py3-none-any.whl
- Upload date:
- Size: 28.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb8844d013f608a78e131fa2704d031b9076384dd610a5e9d12e29f37c0d60a7 |
|
MD5 | 16b7adf96221df3b0a5dc36852de58d6 |
|
BLAKE2b-256 | 0957c4fc6b598a0740857981d4bef294e1299e226dc47d5e9728ac62b156e05e |