Skip to main content

Data Synthesis pipeline to generate object detection data

Project description

Object Detection Data Synthesis

Data Synthesis pipeline to generate object detection data

Alt text

How to run

Run with pip

pip install mdetsyn

And run in python file

from mdetsyn import run_synthesis, create_args

args = create_args()
run_synthesis(args)

Run with command line

python synthesis.py --backgrounds ./backgrounds \
                    --objects ./objects \
                    --savename ./synthesis \
                    --number 1000 \
                    --class_mapping ./class_mapping.json \
                    --class_txt ./classes.txt

Sample

  • Backgrounds folder contain background images (in any folmat)
├── backgrounds/
    ├── background-0.jpg
    ├── background-1.jpg
    └── ...
  • Objects folder contain object images in subfolders (the best is .png format with A channel but any format is still runnable)
├── objects/
    ├── class_1/
    │   ├── image-0.png
    │   ├── image-1.png
    │   └── ...
    ├── class_2/
    └── ...
  • Each image in objects folder will be synthesis by n times with n is user input

  • Output is a synthesis folder contain images and labels dir same as YOLO format

  • Sample visualization:

Background Object Synthesis

Support synthesis methods

  • Random Resize
  • Random Rotate
  • Random Transparency
  • Random Perspective Transform
  • Seamless Clone
  • Grayscale

Error and TODO

  • Sometimes seamless clone does not work
  • Input parameter for each augment
  • Add default arguments to argparse help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mdetsyn-0.0.4.post1.tar.gz (6.3 kB view details)

Uploaded Source

Built Distribution

mdetsyn-0.0.4.post1-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file mdetsyn-0.0.4.post1.tar.gz.

File metadata

  • Download URL: mdetsyn-0.0.4.post1.tar.gz
  • Upload date:
  • Size: 6.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for mdetsyn-0.0.4.post1.tar.gz
Algorithm Hash digest
SHA256 a7eafb5cb5df1bfa61d886e8730d512be7fdfd789aafada35def0b26b6ae3528
MD5 824aa8eca7c64b52d7050bec4f8e1a30
BLAKE2b-256 9f32476c13ae6cfa7f4ff177017839ee604bc1fe6ca011e8ca9def7a974bc8a6

See more details on using hashes here.

File details

Details for the file mdetsyn-0.0.4.post1-py3-none-any.whl.

File metadata

File hashes

Hashes for mdetsyn-0.0.4.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 c7dd58aba59b2a8a7456d5a45d694fd68f913eadbe8732b8c1b6e825a358fcf8
MD5 4dd553a8fe7bd3f4ddf96ece4b29e3b2
BLAKE2b-256 0d221226b3c58600c9d82a2fe2feb9b633f767b86deca641d31048ad315af027

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page