Skip to main content

Extract bus logging data from MDF4 files generated by CANedge from CSS Electronics

Project description

MDF4 Iterator - Load Raw CAN Bus Data

This package lets you extract raw CAN bus data from the CANedge MDF4 log files. The package can e.g. be used together with the canedge_browser and can_decoder modules.

Key features

1. Easily extract raw CAN bus data from MDF4 files
2. Data can be loaded from a local path or e.g. from an S3 server path
3. The output can be an iterable or a pandas dataframe
4. Files can e.g. be loaded from lists generated by the canedge_browser package
5. Loaded CAN data can be decoded using the can_decoder package
6. No external dependencies
7. Faster bulk extraction using optional dependencies


Use pip to install the mdf_iter module:

pip install mdf_iter

Optionally install pandas for fast bulk loading:

pip install pandas


  • pandas (optional)


Pre-built wheels are available for the following platforms:

  • Linux: x86-64 (Python 3.7+)
  • Windows: x86-64 (Python 3.7+)

Other platforms require manual compilation from source.

Module usage examples

Below we open and iterate over the CAN records in a log file from local disk:

import mdf_iter

mdf_path = "00000001.MF4"

with open(mdf_path, "rb") as handle:
    mdf_file = mdf_iter.MdfFile(handle)
    record_iterator = mdf_file.get_can_iterator()
    for record in record_iterator:

Below we open a log file from an S3 server into a pandas dataframe:

import mdf_iter
import s3fs

fs = s3fs.S3FileSystem(
    key="<key>", secret="<secret>", client_kwargs={"endpoint_url": "<url>"}
mdf_path = "bucket_name/12345678/00000001/00000001-12345678.MF4"

with, "rb") as handle:
    mdf_file = mdf_iter.MdfFile(handle)
    df_raw = mdf_file.get_data_frame()


Regarding data sources (local, S3 servers, ...)

The package can by default handle inputs in the form of:

  • Python strings
  • Python Path objects from pathlib
  • File-like objects, obtained using open(file_name, "rb") or fsspec and similar projects.

Any other data source can be adapted to work with the library, if it behaves like a file.

fs = some_fsspec_filesystem_implementation
file_path = a_valid_fsspec_file_path

with, "rb") as handle:
    mdf_file = mdf_iter.MdfFile(handle)

For examples using fsspec to e.g. load data from an S3 server (for use with the CANedge2, see the examples folder.

Extraction methods

Data can be extracted either through an iterator, or in bulk using pandas if it is installed.

with mdf_iter.MdfFile("path") as mdf_file:
    # Using iterator.
    record_iterator = mdf_file.get_can_iterator()
    for record in record_iterator:
    # Using pandas.
    df_raw = mdf_file.get_data_frame()


Extracting log file metadata

Metadata for a log file is accessible through get_metadata(). This returns a dictionary with string keys and dictionary values in the form of MdfMetadataEntry. These are also dictionaries, which expose the possible metadata from the blocks in the MDF file. The possible fields are:

  • description - description of the field
  • name - name of the field, also part of the key
  • read_only - whether the field is marked as read only (has no effect)
  • unit - associated unit for the field
  • value_raw - the value as a string
  • value_type - the value type

For further usage examples, see the examples folders.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mdf_iter-2.1.1-cp37-abi3-win_amd64.whl (522.5 kB view hashes)

Uploaded cp37

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page