Skip to main content

Strong Deep-Learning Baseline algorithms for NLP

Project description

MEAD

MEAD is a library for reproducible deep learning research and fast model development for NLP. It provides easily extensible abstractions and implementations for data loading, model development, training, experiment tracking and export to production.

It also provides implementations of high-performance deep learning models for various NLP tasks, against which newly developed models can be compared. Deep learning experiments are hard to reproduce, MEAD provides functionalities to track them. The goal is to allow a researcher to focus on model development, delegating the repetitive tasks to the library.

Documentation

Tutorials using Colab

MEAD Hub

Installation

Pip

Baseline can be installed as a Python package.

pip install mead-baseline

If you are using tensorflow 2 as your deep learning backend you will need to have tensorflow_addons already installed or have it get installed directly with:

pip install mead-baseline[tf2]

Note for TF 2.1 users: If you are using TF 2.1, you cannot just pip install tensorflow_addons (or the command above) -- it will pull a version that is dependent on a more recent version with breaking changes. If you are running TF 2.1, use a pinned version of the addons: pip install tensorflow_addons==0.9.1

From the repository

If you have a clone of this repostory and want to install from it:

cd layers
pip install -e .
cd ../
pip install -e .

This first installs mead-layers AKA 8 mile, a tiny layers API containing PyTorch and TensorFlow primitives, locally and then mead-baseline

Dockerhub

We use Github CI/CD to automatically cut releases for TensorFlow (1.x and 2.x) and PyTorch via this project:

https://github.com/mead-ml/mead-gpu

Links to the latest dockerhub images can be found there

A Note About Versions

Deep Learning Frameworks are evolving quickly and changes are not always backwards compatible. We recommend recent versions of whichever framework is being used underneath. We currently run on TF versions between 1.13 and 2.3, and we recommend using at least TF 2.1. The PyTorch backend requires at least version 1.3.0, though we recommend using a more recent version.

Citing

If you use the library, please cite the following paper:

@InProceedings{W18-2506,
  author =    "Pressel, Daniel
               and Ray Choudhury, Sagnik
               and Lester, Brian
               and Zhao, Yanjie
               and Barta, Matt",
  title =     "Baseline: A Library for Rapid Modeling, Experimentation and
               Development of Deep Learning Algorithms targeting NLP",
  booktitle = "Proceedings of Workshop for NLP Open Source Software (NLP-OSS)",
  year =      "2018",
  publisher = "Association for Computational Linguistics",
  pages =     "34--40",
  location =  "Melbourne, Australia",
  url =       "http://aclweb.org/anthology/W18-2506"
}

MEAD was selected for a Spotlight Poster at the NeurIPS MLOSS workshop in 2018. OpenReview link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mead-baseline-2.2.6.tar.gz (213.9 kB view details)

Uploaded Source

Built Distribution

mead_baseline-2.2.6-py3-none-any.whl (331.1 kB view details)

Uploaded Python 3

File details

Details for the file mead-baseline-2.2.6.tar.gz.

File metadata

  • Download URL: mead-baseline-2.2.6.tar.gz
  • Upload date:
  • Size: 213.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for mead-baseline-2.2.6.tar.gz
Algorithm Hash digest
SHA256 30eba3111d3710ca378fcd875d939bca92ee40c758c2f34c0a3fd236144db6bd
MD5 3d2ce0a9731a0499bcd32af096227c81
BLAKE2b-256 401fb7b06943e8c73ce98b85cd8c045fd102b9fd155ea9b30c39374acfb7d43c

See more details on using hashes here.

File details

Details for the file mead_baseline-2.2.6-py3-none-any.whl.

File metadata

  • Download URL: mead_baseline-2.2.6-py3-none-any.whl
  • Upload date:
  • Size: 331.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for mead_baseline-2.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 165b8a1256dc2c71a62cf0adcff827d86e843dafe8f5470ce4c817b381808cac
MD5 7872d411a60592005e74161a88bdcc0d
BLAKE2b-256 498c998f927c369ef30ae0f7bc7e83840da7b13cf163dd6b1a91cb2e1d9ff847

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page