Skip to main content

Strong Deep-Learning Baseline algorithms for NLP

Project description

MEAD

MEAD is a library for reproducible deep learning research and fast model development for NLP. It provides easily extensible abstractions and implementations for data loading, model development, training, experiment tracking and export to production.

It also provides implementations of high-performance deep learning models for various NLP tasks, against which newly developed models can be compared. Deep learning experiments are hard to reproduce, MEAD provides functionalities to track them. The goal is to allow a researcher to focus on model development, delegating the repetitive tasks to the library.

Documentation

Tutorials using Colab

MEAD Hub

Installation

Pip

Baseline can be installed as a Python package.

pip install mead-baseline

If you are using tensorflow 2 as your deep learning backend you will need to have tensorflow_addons already installed or have it get installed directly with:

pip install mead-baseline[tf2]

Note for TF 2.1 users: If you are using TF 2.1, you cannot just pip install tensorflow_addons (or the command above) -- it will pull a version that is dependent on a more recent version with breaking changes. If you are running TF 2.1, use a pinned version of the addons: pip install tensorflow_addons==0.9.1

From the repository

If you have a clone of this repostory and want to install from it:

cd layers
pip install -e .
cd ../
pip install -e .

This first installs mead-layers AKA 8 mile, a tiny layers API containing PyTorch and TensorFlow primitives, locally and then mead-baseline

Dockerhub

We use Github CI/CD to automatically cut releases for TensorFlow (1.x and 2.x) and PyTorch via this project:

https://github.com/mead-ml/mead-gpu

Links to the latest dockerhub images can be found there

A Note About Versions

Deep Learning Frameworks are evolving quickly and changes are not always backwards compatible. We recommend recent versions of whichever framework is being used underneath. We currently run on TF versions between 1.13 and 2.3, and we recommend using at least TF 2.1. The PyTorch backend requires at least version 1.3.0, though we recommend using a more recent version.

Citing

If you use the library, please cite the following paper:

@InProceedings{W18-2506,
  author =    "Pressel, Daniel
               and Ray Choudhury, Sagnik
               and Lester, Brian
               and Zhao, Yanjie
               and Barta, Matt",
  title =     "Baseline: A Library for Rapid Modeling, Experimentation and
               Development of Deep Learning Algorithms targeting NLP",
  booktitle = "Proceedings of Workshop for NLP Open Source Software (NLP-OSS)",
  year =      "2018",
  publisher = "Association for Computational Linguistics",
  pages =     "34--40",
  location =  "Melbourne, Australia",
  url =       "http://aclweb.org/anthology/W18-2506"
}

MEAD was selected for a Spotlight Poster at the NeurIPS MLOSS workshop in 2018. OpenReview link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mead-baseline-2.3.5.tar.gz (211.3 kB view details)

Uploaded Source

Built Distribution

mead_baseline-2.3.5-py3-none-any.whl (322.9 kB view details)

Uploaded Python 3

File details

Details for the file mead-baseline-2.3.5.tar.gz.

File metadata

  • Download URL: mead-baseline-2.3.5.tar.gz
  • Upload date:
  • Size: 211.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for mead-baseline-2.3.5.tar.gz
Algorithm Hash digest
SHA256 b81a2ebeb3091208ec2b29bb48fa02166c469872a36e7e4fed510abac5bf54fb
MD5 e952b5527c9dac1dbe326a39e8d8ec7b
BLAKE2b-256 aa4431b206fa8a8cdda5f8c82cafdc4f48c81879ddfb99b2a52fe3c7620fe7f7

See more details on using hashes here.

File details

Details for the file mead_baseline-2.3.5-py3-none-any.whl.

File metadata

  • Download URL: mead_baseline-2.3.5-py3-none-any.whl
  • Upload date:
  • Size: 322.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for mead_baseline-2.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 21d1c20056826d6c24f93ae7d6ac5352916cb2df64249a38d76d231c8ccbb6f8
MD5 8968aac6dacb5c115aeac63f1f063ba6
BLAKE2b-256 1a32b2d04cdc01da9dcb33fb7a57a56a1f8c04d0fdda6da3d6f11f7786917f6b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page