Skip to main content

Mean Average Precision evaluator for object detection.

Project description

mAP: Mean Average Precision for Object Detection

A simple library for the evaluation of object detectors.

In practice, a higher mAP value indicates a better performance of your detector, given your ground-truth and set of classes.

Install the latest version

pip install --upgrade git+https://github.com/bes-dev/mean_average_precision.git

Example

import numpy as np
from mean_average_precision import MeanAveragePrecision

# [xmin, ymin, xmax, ymax, class_id, difficult]
gt = np.array([
    [439, 157, 556, 241, 0, 0],
    [437, 246, 518, 351, 0, 0],
    [515, 306, 595, 375, 0, 0],
    [407, 386, 531, 476, 0, 0],
    [544, 419, 621, 476, 0, 0],
    [609, 297, 636, 392, 0, 0]
])

# [xmin, ymin, xmax, ymax, class_id, confidence]
preds = np.array([
    [429, 219, 528, 247, 0, 0.460851],
    [433, 260, 506, 336, 0, 0.269833],
    [518, 314, 603, 369, 0, 0.462608],
    [592, 310, 634, 388, 0, 0.298196],
    [403, 384, 517, 461, 0, 0.382881],
    [405, 429, 519, 470, 0, 0.369369],
    [433, 272, 499, 341, 0, 0.272826],
    [413, 390, 515, 459, 0, 0.619459]
])

# create metric_fn
metric_fn = MeanAveragePrecision(num_classes=1)

# add some samples to evaluation
for i in range(10):
    metric_fn.add(preds, gt)

# compute PASCAL VOC metric
print(f"VOC PASCAL mAP: {metric_fn.value(iou_thresholds=0.5, recall_thresholds=np.arange(0., 1.1, 0.1))['mAP']}")

# compute PASCAL VOC metric at the all points
print(f"VOC PASCAL mAP in all points: {metric_fn.value(iou_thresholds=0.5)['mAP']}")

# compute metric COCO metric
print(f"COCO mAP: {metric_fn.value(iou_thresholds=np.arange(0.5, 1.0, 0.05), recall_thresholds=np.arange(0., 1.01, 0.01))['mAP']}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mean_average_precision-0.0.1.tar.gz (5.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page