Skip to main content

Python package for easily interfacing with MediaCatch APIs and data formats.

Project description

Unit Tests codecov Quality Check Publish Documentation

MediaCatch

Python package for easily interfacing with MediaCatch APIs and data formats. Documentation can be found at api.mediacatch.io/mediacatch/docs/.

Requirements

Installation

Install with pip

pip install mediacatch

Getting Started

Firstly, add your MediaCatch API key to your environment variables

export MEDIACATCH_API_KEY=<your-api-key-here>

Then you can start using the command line interface

mediacatch --help
usage: mediacatch <command> [<args>]

MediaCatch CLI tool

positional arguments:
  {speech,vision,viz}  mediacatch command helpers
    speech             CLI tool to run inference with MediaCatch Speech API
    vision             CLI tool to run inference with MediaCatch Vision API
    viz                CLI tool to visualize the results of MediaCatch

options:
  -h, --help           show this help message and exit

Upload a file to MediaCatch Speech API and get the results

mediacatch speech path/to/file --save-result path/to/save/result.json
# or to see options
mediacatch speech --help

Upload a file to MediaCatch vision API and get the results

mediacatch vision path/to/file ocr --save-result path/to/save/result.json
# or to see options
mediacatch vision --help

Or import as a module

from mediacatch.vision import upload, wait_for_result

file_id = upload(
  fpath='path/to/file',
  type='ocr',
  # Optional parameters with their default values
  fps=1, # Frames per second for video processing. Defaults to 1.
  tolerance=10, # Tolerance for text detection. Defaults to 10.
  min_bbox_iou=0.5 # Minimum bounding box intersection over union for text detection. Defaults to 0.5.
  min_levenshtein_ratio=0.75 # Minimum Levenshtein ratio for merging text detection (more info here: https://rapidfuzz.github.io/Levenshtein/levenshtein.html#ratio). Defaults to 0.75.
  moving_threshold=50, # If merged text detections center moves more pixels than this threshold, it will be considered moving text. Defaults to 50.
  max_text_length=3, # If text length is less than this value, use max_text_confidence as confidence threshold. Defaults to 3.
  min_text_confidence=0.5, # Confidence threshold for text detection (if text length is greater than max_text_length). Defaults to 0.5.
  max_text_confidence=0.8, # Confidence threshold for text detection (if text length is less than max_text_length). Defaults to 0.8.
  max_height_width_ratio=2.0, # Discard detection if height/width ratio is greater than this value. Defaults to 2.0.
  get_detection_histogram=False, # If true, get histogram of detection. Defaults to False.
  detection_histogram_bins=8, # Number of bins for histogram calculation. Defaults to 8.
)

result = wait_for_result(file_id)

Visualize the results from MediaCatch

mediacatch viz ocr path/to/file path/to/result.json path/to/save.mp4
# or to see options
mediacatch viz --help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mediacatch-0.1.0.tar.gz (220.1 kB view details)

Uploaded Source

Built Distribution

mediacatch-0.1.0-py3-none-any.whl (179.2 kB view details)

Uploaded Python 3

File details

Details for the file mediacatch-0.1.0.tar.gz.

File metadata

  • Download URL: mediacatch-0.1.0.tar.gz
  • Upload date:
  • Size: 220.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mediacatch-0.1.0.tar.gz
Algorithm Hash digest
SHA256 2da17d77410559746b8a0bfc2c19baf9e0ea676cc3b0a3dc0731f00cad47d99f
MD5 83bb432d9f8b9ade9ece8c1c4bfb938a
BLAKE2b-256 128761b022eec14561e81a0dd8c8a8ec1c8a7954d916498d75a0d67019561cf0

See more details on using hashes here.

File details

Details for the file mediacatch-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: mediacatch-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 179.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mediacatch-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a547831f1638e1875d1c8701ad66736e09e4be66f05c72e2b4279bbd5f4c8187
MD5 aa3e143631aa5771675e08d8639d871d
BLAKE2b-256 5bff00d01e024b94a4efbe9e2d05cc8266821be4e86211799b9ced1b022aedef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page