Skip to main content

Limebit Medmodels Package

Project description

MedModels Logo

Using High-End Machine Learning to Enhance Medical Data Analyses

Table of Contents

Why do you need MedModels?

The use of medical data in connection with AI is a rapidly growing field of research. However, there is a significant gap between the methodology that is published in scientific papers and the techniques that are used in the medical industry. Currently, companies have to adapt the latest findings to their individual set-up. With MedModels, we close this gap by offering all users an intuitive Python framework that provides the methods from current research publications in a directly usable manner.

What is MedModels?

MedModels is a Python-based software framework for the analysis of real-world evidence data for the healthcare sector. MedModels makes complex analyses and predictions based on medical data significantly faster, more precise, reliable, and more cost-effective.

The vision is to combine the key expertise of research companies and science in order to gain the greatest possible benefit for patients from the data. With MedModels, we close the clear innovation gap between academic research and industrial application by providing the latest scientific methods as an application-oriented framework.

Who is MedModels aimed at?

MedModels is aimed at a wide range of users, including medical care institutions (e.g., clinics and hospitals), research institutions (e.g., universities and cancer registers), insurance companies (e.g., health insurance and accident insurance), pharmaceutical companies as well as regulatory institutions such as drug administrations.

What does MedModels offer?

  • Treatment Effect Estimation
    Treatment effect estimations are used to compare the effects of treatment and control groups in non-experimental observational studies.
  • Patient Matching
    Statistical methods as well as innovative machine learning algorithms help identify similar patients in treatment and control groups to account for confounding variables.
  • Medical Data Synthesis
    Generative synthetic patient data closes data gaps and makes representative patient data available while ensuring data privacy.
  • Medical Concept Embeddings
    Medical concept embeddings pre-process medical raw data into compact representations that depict temporal and causal relationships of the concepts (e.g., diagnosis, treatment, medications, ...).
  • Predictive Modeling
    Machine learning models predict individual patient-level risks (e.g., diagnostics, events, treatment chances, ...) based on EHR data.
  • Explainable AI
    Counterfactual explanations and other techniques make black box forecasts comprehensible and interpretable.

How do you get MedModels?

Limebit hosts the official open source code on GitHub at: MedModels GitHub Repository

We recommend to use pip to install the latest version of MedModels:

pip install medmodels

For detailed information on how to use MedModels, please read the MedModels documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medmodels-0.1.2.tar.gz (123.0 kB view details)

Uploaded Source

Built Distributions

medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (5.5 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl (5.5 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (5.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (5.2 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (5.5 MB view details)

Uploaded PyPy musllinux: musl 1.2+ x86-64

medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl (5.5 MB view details)

Uploaded PyPy musllinux: musl 1.2+ i686

medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (5.4 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARMv7l

medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (5.2 MB view details)

Uploaded PyPy musllinux: musl 1.2+ ARM64

medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

medmodels-0.1.2-cp312-none-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

medmodels-0.1.2-cp312-none-win32.whl (3.9 MB view details)

Uploaded CPython 3.12 Windows x86

medmodels-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl (5.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

medmodels-0.1.2-cp312-cp312-musllinux_1_2_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

medmodels-0.1.2-cp312-cp312-musllinux_1_2_armv7l.whl (5.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

medmodels-0.1.2-cp312-cp312-musllinux_1_2_aarch64.whl (5.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

medmodels-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

medmodels-0.1.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

medmodels-0.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

medmodels-0.1.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

medmodels-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

medmodels-0.1.2-cp312-cp312-macosx_11_0_arm64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

medmodels-0.1.2-cp312-cp312-macosx_10_12_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

medmodels-0.1.2-cp311-none-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

medmodels-0.1.2-cp311-none-win32.whl (3.9 MB view details)

Uploaded CPython 3.11 Windows x86

medmodels-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

medmodels-0.1.2-cp311-cp311-musllinux_1_2_i686.whl (5.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

medmodels-0.1.2-cp311-cp311-musllinux_1_2_armv7l.whl (5.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

medmodels-0.1.2-cp311-cp311-musllinux_1_2_aarch64.whl (5.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

medmodels-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

medmodels-0.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

medmodels-0.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

medmodels-0.1.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

medmodels-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

medmodels-0.1.2-cp311-cp311-macosx_11_0_arm64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

medmodels-0.1.2-cp311-cp311-macosx_10_12_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

medmodels-0.1.2-cp310-none-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

medmodels-0.1.2-cp310-none-win32.whl (3.9 MB view details)

Uploaded CPython 3.10 Windows x86

medmodels-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

medmodels-0.1.2-cp310-cp310-musllinux_1_2_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

medmodels-0.1.2-cp310-cp310-musllinux_1_2_armv7l.whl (5.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

medmodels-0.1.2-cp310-cp310-musllinux_1_2_aarch64.whl (5.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

medmodels-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

medmodels-0.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

medmodels-0.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

medmodels-0.1.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

medmodels-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

medmodels-0.1.2-cp310-cp310-macosx_11_0_arm64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

medmodels-0.1.2-cp39-none-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

medmodels-0.1.2-cp39-none-win32.whl (3.9 MB view details)

Uploaded CPython 3.9 Windows x86

medmodels-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

medmodels-0.1.2-cp39-cp39-musllinux_1_2_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

medmodels-0.1.2-cp39-cp39-musllinux_1_2_armv7l.whl (5.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

medmodels-0.1.2-cp39-cp39-musllinux_1_2_aarch64.whl (5.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

medmodels-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

medmodels-0.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

medmodels-0.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

medmodels-0.1.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

medmodels-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

medmodels-0.1.2-cp39-cp39-macosx_11_0_arm64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file medmodels-0.1.2.tar.gz.

File metadata

  • Download URL: medmodels-0.1.2.tar.gz
  • Upload date:
  • Size: 123.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for medmodels-0.1.2.tar.gz
Algorithm Hash digest
SHA256 705ab0ff1de6cc624a9878e47479489dbd39778258b586d10a4487b18e4175a0
MD5 cc31b9dcbea46caa42bfd3283f7e8a6f
BLAKE2b-256 499c3fa9bba1d8056c23387697eb32c51b1978dace2a2b7030507f54f2724290

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8c6e19f44d1a33bc15f0e76d1c00482d83f8e7d29644cda355548959c3844e79
MD5 0cd3d6b20068e83f209327d7ca8e89b3
BLAKE2b-256 243925e39ab0241593fd66fbdc33a8068e5412dd893d869f0263d405cd339fd3

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 954d9b2e4ed48d9c90320215827871e591e02c6521bbb1ef7b5e1354466a7848
MD5 5001ad62e4cac5b6806f02e78c016e13
BLAKE2b-256 fca33b40230a5300dcc54f71480c1cd66a340291475c3be4b3368e79007ace34

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3467250841df8ccedfe5d4b36199b8998814c298e74f3f511ad91684b3b3a675
MD5 f543750c92f2fd24198a3681f0e25ead
BLAKE2b-256 07de54f8aa0af4c178d79a62db0b5b8d00eb784fad087e67c9a8ff7eaf17340c

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d14229549451d5f619d4d23d2aabf0991b23466c81ac91010cfd7f137c922a6e
MD5 ac7614501a56d7fcf8406fd32b29994c
BLAKE2b-256 dd5f1a4c5dc3d26ef8f7cac0bd1d133bda84fef9cf8b3f945210d075334022d8

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f08acfcf87bea4e3d623c01cc53b3bfa58071d3bc4f2f1278d14d96568d75cb6
MD5 74962c7d1348cc60ece99d8daee8e33b
BLAKE2b-256 ab31c24ccc53d362860ec5671c01e9536d69ca956ce64d48578bb01d47185213

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6792da5937202d8e0408030600e1e75d738ed730a638afd2d5d6ca0b261a627d
MD5 53ee304f5afa1589849f4fcef7199125
BLAKE2b-256 596a43a10df999340d92b6c3c4b3ef37592bc79b8bfabea7cc6465b28ccb243e

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cdd9519dc42b5789411b1643d075227d614d454a430a686fc10ead402cd82bdd
MD5 c8cd6ce1ef0b186e499eee2407bb3968
BLAKE2b-256 7a522ca599691ae73a08b1a32e8b1ce3134efa9598b78e9d1ada4e324610a47d

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b7d62f496de4424c9a9977cd18952dbffc028f8ee5111a0b8e7dde382284db7f
MD5 b551132bbfe19fb5c56d6329c15a4cf7
BLAKE2b-256 3e4fb0cd4edf2f80f4cba51a6c1a60371a87407e3637150bf7942b392cbf89cf

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb265d8a0e8d4802e7db4d8b25aedd1ef4914b1386890764d92ceba62cf135e0
MD5 dee4feb5e46036c5d83a7b11c904e256
BLAKE2b-256 fb12fe01ef5b3d2645b316d17edadec8b878ea1fd9459e9fa44aa68abe283254

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 42f5fdff3083ab7eefe927c766460c44a699d087a0728de6c585e0e85277737a
MD5 ed9cb1a7805f416e5a43eec18d2a7ce6
BLAKE2b-256 b58593b50779dca211dba8096024c9a327ba662d2712f7e11c9ffc11d300cc5a

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6186e5165923b9b17999f691189df6dc6ce287b08f6d22c1f15ba226c90ff7f0
MD5 f015f3ebc2c7d34ac6f538547adba5a6
BLAKE2b-256 fc7a4c8b4164627480713713b45bdc3eead2433d90be90cf60ddffb9562bd92d

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 36265953dd8254a99febda94690007461f694f8c8357270bc9f86cb54cd42276
MD5 c59b27e224958b2672e778be3f539219
BLAKE2b-256 a4185e0123bec1f1af58b98d00d6befae9d2fa864d64a72990e839544ff8f1e4

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b14f4225dc9434877516dd9115a6ca4c8da272af585bd1cbf82c8f4db20f3901
MD5 4fee56c02a68da6a4d9bb3ae83216c75
BLAKE2b-256 4b1da6e6287992a4933d4042898ec220d0ddce3142638d28f9fb41b755af450e

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f4e1a0d1c6388af8116a8c160bc087a93ca7bc693c5442453263a9b402e16bd
MD5 c523f8cea34abe59eefdc17265548098
BLAKE2b-256 1e23efb9c28f2236448b1a594577546ffdc518004533fb2529369a67ca6e295c

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 072cfa2f0dda3fba8366405d55453ed95e78a1e0238d1be62e7ae22afe40ad5b
MD5 68c646fc6ba765607cf16f20e7650ba3
BLAKE2b-256 bf1ebb385f1ca2612fc0974f0f38cb9325cb7d15fa404670fb5bc12923dbccbf

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f1befc901c6edc22c14abbd8fdfbac9b9a2d734fb8d4a3f6017d521ba2f2783e
MD5 bcf9b506f57379dcb9fb51c0864343da
BLAKE2b-256 e182ca243cfdd9decb7908f6f8ba33fa2c210995b5f89eecf386a8fe5ea15140

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0fdc116a385091a5e80dbae233b020e1947808af64c9f46eecb9f1ceea0fb8d4
MD5 6a61b638699f7326ada0d0645dcba503
BLAKE2b-256 5d9132b50d87b6ee8cffd7396e8cb3b10f70e14af7cc6e1f1bd55433888f698f

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 834da2430c67570b776de08416fac7c45bd737a901535382cbc1ec983450c77a
MD5 0aab26848aacd80fc45477d9f34f4961
BLAKE2b-256 3135a08f379b87afa9f32fc3030979a393c6231b07c3e42d7a80b0f68a4af683

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d8d123056d3278586f455948d9a7e86f9301a5a195d4f72005b9ae85f59d2334
MD5 c6cb2bf88c3a11bf788268772d0fee90
BLAKE2b-256 7ba2782a4ceebbaf159ad3631d36e9e19aa9fbba25531d87e8146818180da786

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-none-win32.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-none-win32.whl
Algorithm Hash digest
SHA256 67256e28b478c444d097285e455e811c6c6a0a5d109db0e77cdf71994adf1e6b
MD5 07516223b5aeeae0b041e2f8bca8eb99
BLAKE2b-256 0126d679c670de653401186fa5e76bdb7e3fa7c1aad0367e23e8991d1c270ca0

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ae444d5d01273756cdaa6a4798f04f61528c6338d54cca1f3eedc5a13e766d9d
MD5 54250c79292212ec6bc9247c4b6ac736
BLAKE2b-256 b7b253d3b819a8c3f101f84b9cade521cde1838d0d5b3e77ad71f2fcd88b8f32

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 583abb8581e6e732a521306c9fcc7701a1163e61012c4e6a0bab3356f06924f6
MD5 e39ad5795c83098c4e663686ad1400b4
BLAKE2b-256 bafa3cce6f9407cc88b5ab0b876a799bd61cda5898192729842687f593381e19

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 135be4c15bb46fa4a48857da4616a9f9656957235b13b555458fee343f8265e1
MD5 65923b8b4b6c20aa6108c6235da1d4fa
BLAKE2b-256 111dcf1001a6ba2372cbda834460e01e5a787bfd783adb92e23d8a896a401593

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3c0b9dc8e40d89afe1feef3c95f5ef57c50b3bc4112ba980c7fb821e7b70c463
MD5 6a799569092f06fd290e2d600308ac72
BLAKE2b-256 4e595c6c7f389fb7c31c71db1323321a6b5c07157268193aaa562e66639ca976

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a790aeec9cc190fd0b7e2bd8033ef941cd2ddf99f7fe7aeb2f1a2ea143c0ad3a
MD5 84e6efab3b62cde6a2b844f00a07359d
BLAKE2b-256 f3ff113bd673cf99b1bbd76b6f764abdd524a23f31be06590c1960a5abb35b8f

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6bc630898ec8046df09f5fd6429d003b8e6fa60cd1c65950266c34340894d6ba
MD5 771120da631aeb0b543306a64c0abe36
BLAKE2b-256 46c960fa5a72fe399258bae0fe3c8db45a44734f8aaa2109a54511d404828474

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6ba4816d6638b790c24cfd4115b4e61fe82d279663ba1b11d62424cafffed516
MD5 ea15da4f483f2fc400bc96b5e6d0ea32
BLAKE2b-256 3b13a579e6deb7bcd4fc680e99c52541746678d2470c906ff2ff80461a18f8b2

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b1b8b8d5755c617f7a3df1c9447f96d03b4b9e63d327a402af167f74536aa0b8
MD5 ee9b636024e7d7278135a88cca4c4afc
BLAKE2b-256 287adb567eddcb8fc1a4bc5e20c512a0b7ded8d39665a35c8c4d145a9f821996

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90dc9ed57490938e8b3b09b22be65033bfd6bef80cf37b037f2599759f472fd6
MD5 e6cc784c3ffa9a6c0071a64b4820c148
BLAKE2b-256 2ddab6e0fe0f41e5281b92b71a346d864b27e3f0e5a8aca47517a3c12444f3d9

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f020aa39e6a6804d151cc01bde6de1fd004ee3ccd1e83a2d673d7a71a40a8c62
MD5 fcbd48b7fe55d9cb56459d6ae32e62c6
BLAKE2b-256 646be89b5fa4afda7903a3e3e4cac865ce076e6857632a43c95578cee9278c67

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d73e301e9c63a361d4182932a4959aa6b218f0ea2982d193d1242e56c08303e9
MD5 f0b47c85eb11fc3f9a4f516829f35332
BLAKE2b-256 1bf680be8a04433b43a25b46c6e1ed7393b66c2eec1127d1495cde4c4b44ade3

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 a5a5f4f7e0183c18b5310a0a958edc6c98f4c363e762187c7d8ac725ffb94364
MD5 96d657438e3a8958870356c7f830a64b
BLAKE2b-256 d32f3335a8cdd113c8acf70cf38eb48fb304530adecbebbad45975cd9bd26cc2

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-none-win32.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-none-win32.whl
Algorithm Hash digest
SHA256 d2df07aac0b25a33391d47c810ca8904e79453791e4e31abb0976c839787cba0
MD5 5c05f2012a6158f376c3324a7d1fd156
BLAKE2b-256 ad47ffa8517c048adbe8da0c6f0ea8a62200c875faab553dfe2614f9b6118e75

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 71a780284ba4d81d80d6a200921cf22e2e733d6f50c7547420dea3b4e9de59db
MD5 399e7ae448aedcf01f698f1fdb9b2dd8
BLAKE2b-256 0db6747931adf0cff0aa8dc59e40545faacf150435e2360c6c22f0e47efe8fe9

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a969396c57de7d63aa17682e65068f66f2aaa0a04109ebc5e40a46ea5437010a
MD5 f47064ee03fd8dee6b650afa1d5bb7fc
BLAKE2b-256 926aed70969270a92082737d2751c88d9d5c1fc90afaa08c58586fa079036c25

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3a5947a40ef14e903f51cbd36ffcd254ed159b9dd73ac288aabda384294c117f
MD5 7c5651b3be66d2c800a1f43d05826dc7
BLAKE2b-256 9a51a8c9dae90fe8e9cf437c8cbbd72f14cd2d0eb811f7e37d94d655c7867582

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f8733c8cc137f3ef3948a9fb14e7b89807d861d441702ef168ecdfeec34f4a16
MD5 c134be0679e2c97d4269c6db8f00e91f
BLAKE2b-256 77a2afadd7d52612e62a6c76950f534ff858bf450543c6d78a28bdcb5c38b163

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6f5c39927e868a4186b8fc27e8cf5579ddb632ebee8a94f9c5d20c25fd0f185
MD5 7d251963b2f3e66ea71c944a8bb615dc
BLAKE2b-256 2b85a4485b83c28140d3216c6ee56076c13c59feb2b21f787b787d2a412ee855

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b50f6ec3c958fecaf15f482c9eeb0472fdabd0c7858296ab44343d9d4fbea472
MD5 3bd4fb4d72c20a43d783dc9d39222793
BLAKE2b-256 367eb124f2423a02a7c672e30260d407e3d5d86de92a00338b0532d79fb4318f

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 39cf214405e1a43acabcef81ae924cab3d798d2c408035117ca5a030263d68ea
MD5 f8c35f4a62c00df6583b8fd50a59e7f8
BLAKE2b-256 09af990e34511db8d842753414eeaab197c573bbeabc8adc9e4168f32cae359f

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 3f000c98b27b1ef345f541973309682f965b0d1b3adc169b7e90589c3a00eb81
MD5 f33234c1dee49571c701784899d5801f
BLAKE2b-256 54abb1d09cdf8de329e34ca95acd78edc3a821d69954ef9c6ab0a372f71504cf

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d31b25bc4d1b57188fa4aa740888a15dfb0b17fc63345080c2111b18cd64f616
MD5 af6c269311602dbd37c3496cb53b6e35
BLAKE2b-256 299d846ba37c09e7264af28816d72a96090fec207047fa8ab1315618af63b612

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5999b241593a2f5e31e3019cfff9434921fc2f487d5d939938f0c2724a56be0
MD5 553a006c25a3c59c7d7f7a6ba23a2a32
BLAKE2b-256 d48c9743cc04216be2e7b8e058cfc999af69762fb19d3402dc56a80cef307016

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f30dd3280304ef656eb27c369fc54c3a8b823e42c1731eeb3bbfb8fe3481c393
MD5 bd4acc112de632171bd3ec274b61b95b
BLAKE2b-256 f1f512da3e2201fd4789046eb9e80cd12e76eb965908f70ab15e803faec2329a

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 58b0b862ba3ef2c7c6f9c174080ac9e8309de4216e79d581bbf6b7d0f3f3ab5f
MD5 c9b1e634c7d04df27c1c27eb12834c23
BLAKE2b-256 0d7123ea3157bb9b4f10d721bebe847fc452634f359ad386e47204fc326c0e8e

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-none-win32.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-none-win32.whl
Algorithm Hash digest
SHA256 683954a86051fb06366accce5c1fd60c93a0ba8b588d9dc5fe6e1f95dd13fcd9
MD5 ab23e817c45f3c59a44373391d464783
BLAKE2b-256 0f26acc60c93af8d50d4e5f1e3bf44fd0e47c0f709e12ad3a2e70728a39e46ee

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0462aa395359ef5a0d995041f9bb72888ec2d659c5bd1bb079d5d456e6c9f94c
MD5 a8e6f5b14f2db11c0980034394bc935e
BLAKE2b-256 c52292d650279a1553151d7ecd05e9f4c6c7645434498ac465c5a7638731a151

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b48a089fd4de013b683736f75654d2690552f05fb07c9c4fbff4355a6cef8f16
MD5 93f6332e817342f543ac72da5d670076
BLAKE2b-256 ec15006fdcbd1f9d8f850794238791271395980371cb9c2b0770599e30e13f95

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 6a9bd93355df561b86d6f0fac2b8bc13d0de49d5007e6e947f54c39301d59454
MD5 3f7862cf0fc3b10be2045de2cf95315e
BLAKE2b-256 d05472d25f4c2d9b36b75066307c011b615e1d0b5537074deab80a6e0f9d562a

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9a71a947baf87378916929188910feb818d64979eff7c058c8e6892bc8bd4bf0
MD5 877f0a3308dda3c188f87eca55ed7979
BLAKE2b-256 bea2930cbb3a62bc6c053ea94d30bb3d21c951efb0961cb4d3bec8ba352251d2

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 962a3fdf4586c2130665ceab8caa843dfa7bc2f7939610525202308efacc9f58
MD5 a43441be51028890ea4aaf5d193247cc
BLAKE2b-256 de81f312bb16dbfc2968cba9c80598617275b3d87f6ab0bbc08911002292ccd0

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c845cd24c8dcf146bdf7eeabee4e8e47b3126b45d32bf3bc94a5b3aea98e6f7b
MD5 36b15fd0786591fa41c35f1fd6b68b60
BLAKE2b-256 608af99d954257b9dd700440a231c211184b34615a2e63eae8005736c999ff12

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b6457a15138358d5672b3e5d77a80b098d1689cb185c5c268d8b31192c463733
MD5 2cc3ea6ce007936ebbce3b9a766ff79c
BLAKE2b-256 9e01404e1c9506cedb847045774cd585b0194bf3cc4877577bd79fff5e74a89f

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7b5989488ecc7db36042659e163244a0b9829b760fc84d68e30c1edfc8eeb53b
MD5 7f10aed6f235c3298b81391de9742050
BLAKE2b-256 8d9e8abf91f18d4e1e05a0dce68302bc40ff788694529e8fd47f7b23bbae4e65

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f9c42cbdd355d0eb3dd03559c1263573d53c2d22e34413c8fa47aec50e55806
MD5 9afa4b9b91b07d1807a485993f6e04b0
BLAKE2b-256 38da817c22e6fd8d330c574fd96e9bf3feb6e02f1a5fd066584154e1b8328f68

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12087d1db98e951c41dbbb48c63d41ee97f0c0faa2ed0a3947d735ead61c0b9f
MD5 7f154519e89d2f3dd2ecbbaab1a235e9
BLAKE2b-256 4ffc22248a8d3a9a3f396fd54908211e6818a0376cd868a79c6edb6f5abb6c4f

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 ee17ed248c59d7ce970e4917a27d015673c29a060ac859a0fbae379cd08e8c10
MD5 307dbae8c94aaac8b94cfd0600f264dd
BLAKE2b-256 a61c0f2a8491a1e9efabc2374f429d234dfc5a7559e2c9e8ef92426cd11e96c4

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-none-win32.whl.

File metadata

  • Download URL: medmodels-0.1.2-cp39-none-win32.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for medmodels-0.1.2-cp39-none-win32.whl
Algorithm Hash digest
SHA256 8fc552ec1a2fbd502f02af9edd15de6d4a763897ec9276474d197503c8fb84f1
MD5 1d1f30d711f288c781f973e97823ee73
BLAKE2b-256 bf7d76e2709a23f403ce683761d8c5aa9aa899862d43fb743f35f73a4f16885e

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3dddd427c15b25a7045560657cc5436e35dc46287e180ca9fd2e9bca5f35bcfb
MD5 2dc2c35e5c9e774356f39079ab960e55
BLAKE2b-256 42fa3ea1ac755ff2704c3316072b1f514731aa863cea08aa63c1b1a238bd4633

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e48dcd2065ce671cc86cd4cfa12a26ddb83ed92b1dc16eb9f773697c148c44a3
MD5 c8aa87f8924689e878977d29022c4655
BLAKE2b-256 f239450cf21029f77567435dff06046285f0fd517946147365dd5aa93273d51f

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 9c03ae0ffd4c0a6edf92aa4a730a36b3baf69a2f504bac201bed5dde299082bd
MD5 0197a10c48fad2a0fdf699e904966bb0
BLAKE2b-256 cace1cdbc1ff16d6c7a76f48f04cb0f6345d6f3579e16e1a1a46d1af57e98ade

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b9c92b150881df4f067b2102f94f09978c5cbe7e1ada05a94e1f4a13ae68de9b
MD5 e95683e2fbb695d0e10179ae1c929e2a
BLAKE2b-256 1063f9aad46d7332a8c81445ed1de51a4d88215d532f284d0b3cd2ba15de59f3

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c3baa8bba4e9511e10408e277618c1231484e75daa7c0225074107ed8af42fb
MD5 b289b4b4457890d66219b9fc0c445857
BLAKE2b-256 010f0b89e2b7fa944209d63735356f7e877b06c7832b5fed22f0ea891e2c6ff0

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 394007f504617f70aa07cffa2d19f2d3dc7155d361e818db6be591eb6b28c80f
MD5 98f9efebba9bb44eaf2742d5b1e577b1
BLAKE2b-256 03790338be1ef077a7a76c75b513a896dd2718e8f09b2e319aefac4f5ed60f65

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 73e0e3e95078cc5562f6ce631985045da1e3d0eacf1d8dca0ebca9c4eb8872cd
MD5 127751dc730faf9cd42548f84c535668
BLAKE2b-256 aae35bf1c8529ca3043334bf55533be87263c1ed758a4273b8cc962541cb9c81

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 77a5419f499352833fb0cf278b433eef83cc65bb121514ecb0dd3040b58cb710
MD5 b813007d232a43d23ba3f577b8bcd558
BLAKE2b-256 12bcfff52c46d35ab686992ca1db92395d54ad0623e9bfcf90c348cb884b5a5c

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5c660dcfc8b75c9a83df25852762551a7f03b5be27a045f74662b7a4a3aa88c
MD5 d76080ebb0c0652a7afe38b3afab727c
BLAKE2b-256 6d01a151e2d6f25acd9959562827e988cf99fab0ad6879f4667218a4dacb0f92

See more details on using hashes here.

File details

Details for the file medmodels-0.1.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for medmodels-0.1.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c0f78870b618574a11709369daef592b932dc9733860a6f216278b23dc81243b
MD5 14131c4bdd12b34b71875810f80fd160
BLAKE2b-256 7a13fef03afc42e4fda515a9173e5847bdab1907d581429dc76b03028aadd47b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page