Skip to main content

Basic hypothesis testing made simple

Project description

https://img.shields.io/pypi/v/medstat.svg https://img.shields.io/travis/monferrand/medstat.svg License Documentation Status

medstat is a library aiming to make basic hypothesis testing as simple as possible.

Getting started

This project is available on PyPI you can just:

pip install medstat

Quick Example

Load your data in a dataframe using for instance pd.read_csv() or pd.read_excel().

data = pd.read_csv("my_data.csv")

Test a single hypothesis:

>>> medstat.test_hypothesis(data, 'sex', 'age < 30')

{'contingency_table':
age < 30  False  True  All
sex
Female       26    22   48
Male         24     8   32
All          50    30   80,
'test': 'Fisher',
'p-value': 0.06541995357625573,
'significant': False}

Or test many hypothesis at the same time:

result = medstat.analyse_dataset(data,
                                 [('sex', 'age < 30'),
                                  ('sex', 'test_a'),
                                  ('test_a', 'age > 50'),
                                 ])

It prints the output:

-------------------- Test 1 --------------------
Test independence between sex and age < 30.
Use Chi-squared test.
Result is not significant.
p-value: 0.18407215636751517
Contingency table:
 age < 30  False  True  All
sex
Female       21    18   39
Male         29    12   41
All          50    30   80


-------------------- Test 2 --------------------
Test independence between sex and test_a.
Use Chi-squared test.
Result is not significant.
p-value: 0.9539453144224308
Contingency table:
 test_a  negative  positive  All
sex
Female        25        14   39
Male          25        16   41
All           50        30   80


-------------------- Test 3 --------------------
Test independence between test_a and age > 50.
Use Fisher test.
Result is significant.
p-value: 6.392910983822276e-12
Contingency table:
 age > 50  False  True  All
test_a
negative     46     4   50
positive      5    25   30
All          51    29   80

You can also save it to a text file using the file argument.

result = medstat.analyse_dataset(data,
                                 [('sex', 'age < 30'),
                                  ('sex', 'test_a'),
                                  ('test_a', 'age > 50'),
                                 ],
                                file='report.txt')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medstat-1.0.2.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

medstat-1.0.2-py2.py3-none-any.whl (5.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file medstat-1.0.2.tar.gz.

File metadata

  • Download URL: medstat-1.0.2.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.0

File hashes

Hashes for medstat-1.0.2.tar.gz
Algorithm Hash digest
SHA256 91d519fff773b2faaa66f70722cc422c19f175a1784c7e2d4962ea76fe77ae01
MD5 113e0e3d0333c504dde402c05979e76a
BLAKE2b-256 73f4b398621c7289c4a047b024a678a9a48eeba02e7e0660221f20a14deacdb0

See more details on using hashes here.

File details

Details for the file medstat-1.0.2-py2.py3-none-any.whl.

File metadata

  • Download URL: medstat-1.0.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.0

File hashes

Hashes for medstat-1.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 441410b4237c00631955f0c829563a0d75c7aa61e31b31f6030a8b29947b4e1f
MD5 c3ac5c0ac4be20cbf97f557a70d34dc8
BLAKE2b-256 02aae192dc3fe1a869ad72fa21dbfdbc5350dacbae01600ed251bb67497bc0ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page