Skip to main content

Basic hypothesis testing made simple

Project description

https://img.shields.io/pypi/v/medstat.svg https://img.shields.io/travis/monferrand/medstat.svg Documentation Status

medstat is a library aiming to make basic hypothesis testing as simple as possible.

Getting started

This project is available on PyPI you can just:

pip install medstat

Quick Example

Load your data in a dataframe using for instance pd.read_csv() or pd.read_excel().

data = pd.read_csv("my_data.csv")

Test a single hypothesis:

>>> medstat.test_hypothesis(data, 'sex', 'age < 30')

{'contingency_table':
age < 30  False  True  All
sex
Female       26    22   48
Male         24     8   32
All          50    30   80,
'test': 'Fisher',
'p-value': 0.06541995357625573,
'significant': False}

Or test many hypothesis at the same time:

result = medstat.analyse_dataset(data,
                                 [('sex', 'age < 30'),
                                  ('sex', 'test_a'),
                                  ('test_a', 'age > 50'),
                                 ])

It prints the output:

-------------------- Test 1 --------------------
Test independence between sex and age < 30.
Use Chi-squared test.
Result is not significant.
p-value: 0.18407215636751517
Contingency table:
 age < 30  False  True  All
sex
Female       21    18   39
Male         29    12   41
All          50    30   80


-------------------- Test 2 --------------------
Test independence between sex and test_a.
Use Chi-squared test.
Result is not significant.
p-value: 0.9539453144224308
Contingency table:
 test_a  negative  positive  All
sex
Female        25        14   39
Male          25        16   41
All           50        30   80


-------------------- Test 3 --------------------
Test independence between test_a and age > 50.
Use Fisher test.
Result is significant.
p-value: 6.392910983822276e-12
Contingency table:
 age > 50  False  True  All
test_a
negative     46     4   50
positive      5    25   30
All          51    29   80

You can also save it to a text file using the file argument.

result = medstat.analyse_dataset(data,
                                 [('sex', 'age < 30'),
                                  ('sex', 'test_a'),
                                  ('test_a', 'age > 50'),
                                 ],
                                file='report.txt')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medstat-0.3.0.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

medstat-0.3.0-py2.py3-none-any.whl (5.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file medstat-0.3.0.tar.gz.

File metadata

  • Download URL: medstat-0.3.0.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.0

File hashes

Hashes for medstat-0.3.0.tar.gz
Algorithm Hash digest
SHA256 9d04f0d4961e703929b0b37e1c7fbda7015d16b0d0c8a5d977cc2cf9449a2dc7
MD5 f80a7147394f49a1d85417424fa1f8db
BLAKE2b-256 e6e8ce3417b69c827d6ab386df969e4213fd736f92e6064aae02242025777a40

See more details on using hashes here.

File details

Details for the file medstat-0.3.0-py2.py3-none-any.whl.

File metadata

  • Download URL: medstat-0.3.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.0

File hashes

Hashes for medstat-0.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4315eac6208b76e8ea401cdc4e4ff2c0d3e3375d5a96931e1a76ee6f3665984f
MD5 6c20c1b7c1d0f875fee85cf834e82bfa
BLAKE2b-256 3410762ef81672c39205b007b04c285c45024a6f6aaafa4ef371e05bc1e5272c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page