Skip to main content

Basic hypothesis testing made simple

Project description

https://img.shields.io/pypi/v/medstat.svg https://img.shields.io/travis/monferrand/medstat.svg License Documentation Status

medstat is a library aiming to make basic hypothesis testing as simple as possible.

Getting started

This project is available on PyPI you can just:

pip install medstat

Quick Example

Load your data in a dataframe using for instance pd.read_csv() or pd.read_excel().

data = pd.read_csv("my_data.csv")

Test a single hypothesis:

>>> medstat.test_hypothesis(data, 'sex', 'age < 30')

{'contingency_table':
age < 30  False  True  All
sex
Female       26    22   48
Male         24     8   32
All          50    30   80,
'test': 'Fisher',
'p-value': 0.06541995357625573,
'significant': False}

Or test many hypothesis at the same time:

result = medstat.analyse_dataset(data,
                                 [('sex', 'age < 30'),
                                  ('sex', 'test_a'),
                                  ('test_a', 'age > 50'),
                                 ])

It prints the output:

-------------------- Test 1 --------------------
Test independence between sex and age < 30.
Use Chi-squared test.
Result is not significant.
p-value: 0.18407215636751517
Contingency table:
 age < 30  False  True  All
sex
Female       21    18   39
Male         29    12   41
All          50    30   80


-------------------- Test 2 --------------------
Test independence between sex and test_a.
Use Chi-squared test.
Result is not significant.
p-value: 0.9539453144224308
Contingency table:
 test_a  negative  positive  All
sex
Female        25        14   39
Male          25        16   41
All           50        30   80


-------------------- Test 3 --------------------
Test independence between test_a and age > 50.
Use Fisher test.
Result is significant.
p-value: 6.392910983822276e-12
Contingency table:
 age > 50  False  True  All
test_a
negative     46     4   50
positive      5    25   30
All          51    29   80

You can also save it to a text file using the file argument.

result = medstat.analyse_dataset(data,
                                 [('sex', 'age < 30'),
                                  ('sex', 'test_a'),
                                  ('test_a', 'age > 50'),
                                 ],
                                file='report.txt')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medstat-1.0.1.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

medstat-1.0.1-py2.py3-none-any.whl (5.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file medstat-1.0.1.tar.gz.

File metadata

  • Download URL: medstat-1.0.1.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.0

File hashes

Hashes for medstat-1.0.1.tar.gz
Algorithm Hash digest
SHA256 56faa0b4d0e5c2b2c0d115c5de07595e01ddbbc788f7d04516f1631040bb8b19
MD5 5c6df1ebac1d36dba19fde290c10f36f
BLAKE2b-256 a8e170246876b4f4c85aa2db57c5ecc4a5d28bc1876da5d61acc2ae8fc384cd9

See more details on using hashes here.

File details

Details for the file medstat-1.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: medstat-1.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.8.0

File hashes

Hashes for medstat-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 23615b658a423d045c0c60826c8918c85dba17e09c2386a2ad9915133ea3e801
MD5 50fdd511789fc33e8a8ee1177795edf6
BLAKE2b-256 b61a4db5003a9a99587939f571bcfef325feaad58308e507d99b24dd0a3a91e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page