Skip to main content

Morlet Wavelets for M/EEG analysis

Project description

MEEGLET

Morlet wavelets for M/EEG analysis, [ˈmiːglɪt]

This package provides a lean implementation of Morlet wavelets designed for power-spectral analysis of M/EEG resting-state signals.

  • Distinct frequency-domain parametrization of Morlet wavelets
  • Established spectral M/EEG metrics share same wavelet convolutions
  • Harmonized & tested Python and MATLAB implementation numerically equivalent
  • Comprehensive mathematical documentation
import matplotlib.pyplot as plt
from meeglet import define_frequencies, define_wavelets, plot_wavelet_family

foi, sigma_time, sigma_freq, bw_oct, qt = define_frequencies(
    foi_start=1, foi_end=32, bw_oct=1, delta_oct=1
)

wavelets = define_wavelets(
    foi=foi, sigma_time=sigma_time, sfreq=1000., density='oct'
)

plot_wavelet_family(wavelets, foi, fmax=64)
plt.gcf().set_size_inches(9, 3)

Documentation

Background overview on scope, rationale & design choices
Python tutorials M/EEG data analysis examples
Python API Documentation of Python functions and unit tests
MATLAB functionality MATLAB documentation and data analysis example

Use the left sidebar for navigating conveniently!

Installation

from PyPi

In your environment of choice, use pip to install meeglet:

pip install meeglet

from the sources

Please clone the software, consider installing the dependencies listed in the `environment.yml.

Then do in your conda/mamba environment of choice:

pip install -e .

Citation

When using our package, please cite our two reference articles:

Python implementation and covariance computation.

@article{bomatter2024,
	author = {Bomatter, Philipp and Paillard, Joseph and Garces, Pilar and Hipp, J{\"o}rg and Engemann, Denis-Alexander},
	title = {Machine learning of brain-specific biomarkers from EEG},
	year = {2024},
	journal = {eBioMedicine},
	url = {https://doi.org/10.1016/j.ebiom.2024.105259},
	date = {2024/08/05},
	publisher = {Elsevier},
	isbn = {2352-3964},
	month = {2024/08/06},
	volume = {106},
}

General methodology, MATLAB implementation and power-envelope correlations.

@article{hipp2012large,
  title={Large-scale cortical correlation structure of spontaneous oscillatory activity},
  author={Hipp, Joerg F and Hawellek, David J and Corbetta, Maurizio and Siegel, Markus and Engel, Andreas K},
  journal={Nature neuroscience},
  volume={15},
  number={6},
  pages={884--890},
  year={2012},
  publisher={Nature Publishing Group US New York}
}

Related software

M/EEG features based on Morlet wavelets using the more familiar time-domain parametrization can be readily computed is sevaral major software packages for M/EEG analysis:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

meeglet-0.0.1-py3-none-any.whl (15.9 kB view details)

Uploaded Python 3

File details

Details for the file meeglet-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: meeglet-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 15.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for meeglet-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cb87842dd927238a76b224bd16af0fb750c5567ada7ee82f27bf544a07566d94
MD5 fc3638318e19a6417af0b09f15641e45
BLAKE2b-256 f7277bf2054879943649fe790cfaeec08291e20b49a3f74c3f5e99e03e221ed3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page