Morlet Wavelets for M/EEG analysis
Project description
MEEGLET
Morlet wavelets for M/EEG analysis, [ˈmiːglɪt]
This package provides a lean implementation of Morlet wavelets designed for power-spectral analysis of M/EEG resting-state signals.
- Distinct frequency-domain parametrization of Morlet wavelets
- Established spectral M/EEG metrics share same wavelet convolutions
- Harmonized & tested Python and MATLAB implementation numerically equivalent
- Comprehensive mathematical documentation
import matplotlib.pyplot as plt
from meeglet import define_frequencies, define_wavelets, plot_wavelet_family
foi, sigma_time, sigma_freq, bw_oct, qt = define_frequencies(
foi_start=1, foi_end=32, bw_oct=1, delta_oct=1
)
wavelets = define_wavelets(
foi=foi, sigma_time=sigma_time, sfreq=1000., density='oct'
)
plot_wavelet_family(wavelets, foi, fmax=64)
plt.gcf().set_size_inches(9, 3)
Documentation
Background | overview on scope, rationale & design choices |
Python tutorials | M/EEG data analysis examples |
Python API | Documentation of Python functions and unit tests |
MATLAB functionality | MATLAB documentation and data analysis example |
Use the left sidebar for navigating conveniently!
Installation
from PyPi
In your environment of choice, use pip to install meeglet:
pip install meeglet
from the sources
Please clone the software, consider installing the dependencies listed in the `environment.yml.
Then do in your conda/mamba environment of choice:
pip install -e .
Citation
When using our package, please cite our two reference articles:
Python implementation and covariance computation.
@article {bomatter2023,
author = {Philipp Bomatter and Joseph Paillard and Pilar Garces and Joerg F Hipp and Denis A Engemann},
title = {Machine learning of brain-specific biomarkers from EEG},
elocation-id = {2023.12.15.571864},
year = {2023},
doi = {10.1101/2023.12.15.571864},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2023/12/21/2023.12.15.571864},
eprint = {https://www.biorxiv.org/content/early/2023/12/21/2023.12.15.571864.full.pdf},
journal = {bioRxiv}
}
General methodology, MATLAB implementation and power-envelope correlations.
@article{hipp2012large,
title={Large-scale cortical correlation structure of spontaneous oscillatory activity},
author={Hipp, Joerg F and Hawellek, David J and Corbetta, Maurizio and Siegel, Markus and Engel, Andreas K},
journal={Nature neuroscience},
volume={15},
number={6},
pages={884--890},
year={2012},
publisher={Nature Publishing Group US New York}
}
Related software
M/EEG features based on Morlet wavelets using the more familiar time-domain parametrization can be readily computed is sevaral major software packages for M/EEG analysis:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file meeglet-0.0.1rc6.tar.gz
.
File metadata
- Download URL: meeglet-0.0.1rc6.tar.gz
- Upload date:
- Size: 37.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dd7cb9c2cee53768897b844b3151b83acdf3590bea1d6457a6e08e64c2b6a579 |
|
MD5 | 7838196b2186ed3bca7e4ac091f02926 |
|
BLAKE2b-256 | 5d2137cdd088ba76253287a981ec60e479eb96e64b072df4aab926189db51eaf |