Skip to main content

CLI and library to compute the Mel-Cepstral Distance of two WAV files based on the paper 'Mel-Cepstral Distance Measure for Objective Speech Quality Assessment' by Robert F. Kubichek.

Project description

Mel-Cepstral Distance

PyPI PyPI MIT PyPI PyPI DOI

CLI and library to compute the mel-cepstral distance of two WAV files based on the paper "Mel-Cepstral Distance Measure for Objective Speech Quality Assessment" by Robert F. Kubichek.

Installation

pip install mel-cepstral-distance --user

Usage as CLI

mcd-cli

Example

# Download two example audio files
wget https://github.com/jasminsternkopf/mel_cepstral_distance/raw/main/examples/similar_audios/original.wav
wget https://github.com/jasminsternkopf/mel_cepstral_distance/raw/main/examples/similar_audios/inferred.wav

# Calculate metrics
mcd-cli from-wav original.wav inferred.wav

Output:

Mel-Cepstral Distance: 19.013673608495836
Penalty: 0.11946050096339111
# Frames: 519

This will print a message informing you about the mel-cepstral distance and penalty between the audios whose paths were given as arguments and the number of frames that were used in the computation.

Usage as a library

from mel_cepstral_distance import get_metrics_wavs, get_metrics_mels, get_metrics_mels_pairwise

Main methods

  • get_metrics_wavs
  • get_metrics_mels

Both methods return the mel-cepstral distance, the penalty and the final frame number. Examples and information on the parameters can be found in the corresponding documentations.

Development setup

# update
sudo apt update
# install Python 3.8-3.11 for ensuring that tests can be run
sudo apt install python3-pip \
  python3.8 python3.8-dev python3.8-distutils python3.8-venv \
  python3.9 python3.9-dev python3.9-distutils python3.9-venv \
  python3.10 python3.10-dev python3.10-distutils python3.10-venv \
  python3.11 python3.11-dev python3.11-distutils python3.11-venv
# install pipenv for creation of virtual environments
python3.8 -m pip install pipenv --user

# check out repo
git clone https://github.com/jasminsternkopf/mel_cepstral_distance.git
cd mel_cepstral_distance
# create virtual environment
python3.8 -m pipenv install --dev

Running the tests

# first, install the tool (see "Development setup")
# then, navigate into the directory of the repo
cd mel_cepstral_distance
# activate environment
python3.8 -m pipenv shell
# run tests
tox

License

MIT License

References

  • Kubichek, R. “Mel-Cepstral Distance Measure for Objective Speech Quality Assessment.” In Proceedings of IEEE Pacific Rim Conference on Communications Computers and Signal Processing, 1:125–28. Victoria, BC, Canada: IEEE, 1993. https://doi.org/10.1109/PACRIM.1993.407206.
  • Muda, Lindasalwa, Mumtaj Begam, and I. Elamvazuthi. “Voice Recognition Algorithms Using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques.” Journal of Computing vol. 2, no. 3 (March 2010): 6.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 416228727 – CRC 1410

Citation

If you want to cite this repo, you can use the BibTeX-entry generated by GitHub (see About => Cite this repository).

Sternkopf, J., & Taubert, S. (2024). mel-cepstral-distance (Version 0.0.3) [Computer software]. https://doi.org/10.5281/zenodo.10567255

FAQ

How were the default parameters set?

We based some of the parameters on the two mentioned references and set the other ones by ourselves depending on the parameter description of the underlying libraries:

Why is Python 3.12 not supported?

The dependency numba is currently not available for Python 3.12.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mel-cepstral-distance-0.0.3.tar.gz (1.9 MB view details)

Uploaded Source

Built Distribution

mel_cepstral_distance-0.0.3-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

File details

Details for the file mel-cepstral-distance-0.0.3.tar.gz.

File metadata

  • Download URL: mel-cepstral-distance-0.0.3.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for mel-cepstral-distance-0.0.3.tar.gz
Algorithm Hash digest
SHA256 eae9b24fa24f13558d51f3eea1865b8ccfd47e3e8894c702464515de1405e72f
MD5 57c0f8950466f2711ad998027d28e312
BLAKE2b-256 8b10d977a96531e3e7384b3d3ae661d410782daf94eb252d076265c90a574d05

See more details on using hashes here.

File details

Details for the file mel_cepstral_distance-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for mel_cepstral_distance-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ec383a4f713abe96d20a1d5b316b1c04cd92611dcdc7b5b368349cb5dc5f89d9
MD5 e7dce15e813dade34c04856379001920
BLAKE2b-256 4709ed5d3917346e3345b76a69ec6ddc699d5e254673f8c2d0701cd9c2915d89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page