Skip to main content

No project description provided

Project description

Installation

pip install memo

Documentation

The documentation can be found here.

The quickstart guide is found here.

Usage

Here's an example of utility functions provided by our library.

import numpy as np
from memo import memlist, memfile, grid, time_taken

data = []

@memfile(filepath="results.jsonl")
@memlist(data=data)
@time_taken()
def birthday_experiment(class_size, n_sim):
    """Simulates the birthday paradox. Vectorized = Fast!"""
    sims = np.random.randint(1, 365 + 1, (n_sim, class_size))
    sort_sims = np.sort(sims, axis=1)
    n_uniq = (sort_sims[:, 1:] != sort_sims[:, :-1]).sum(axis = 1) + 1
    proba = np.mean(n_uniq != class_size)
    return {"est_proba": proba}

for settings in grid(class_size=[5, 10, 20, 30], n_sim=[1000, 1_000_000]):
    birthday_experiment(**settings)

The decorators memlist and memfile are making sure that the keyword arugments and dictionary output of the birthday_experiment are logged. The contents of the results.jsonl-file and the data variable looks like this;

{"class_size": 5, "n_sim": 1000, "est_proba": 0.024, "time_taken": 0.0004899501800537109}
{"class_size": 5, "n_sim": 1000000, "est_proba": 0.027178, "time_taken": 0.19407916069030762}
{"class_size": 10, "n_sim": 1000, "est_proba": 0.104, "time_taken": 0.000598907470703125}
{"class_size": 10, "n_sim": 1000000, "est_proba": 0.117062, "time_taken": 0.3751380443572998}
{"class_size": 20, "n_sim": 1000, "est_proba": 0.415, "time_taken": 0.0009679794311523438}
{"class_size": 20, "n_sim": 1000000, "est_proba": 0.411571, "time_taken": 0.7928380966186523}
{"class_size": 30, "n_sim": 1000, "est_proba": 0.703, "time_taken": 0.0018239021301269531}
{"class_size": 30, "n_sim": 1000000, "est_proba": 0.706033, "time_taken": 1.1375510692596436}

The nice thing about being able to log results to a file or to the web is that you can also more easily parallize your jobs! For example now you can use the Runner class to parrallelize the function call with joblib.

import numpy as np
from memo import memlist, memfile, grid, time_taken, Runner

data = []

@memfile(filepath="results.jsonl")
@memlist(data=data)
@time_taken()
def birthday_experiment(class_size, n_sim):
    """Simulates the birthday paradox. Vectorized = Fast!"""
    sims = np.random.randint(1, 365 + 1, (n_sim, class_size))
    sort_sims = np.sort(sims, axis=1)
    n_uniq = (sort_sims[:, 1:] != sort_sims[:, :-1]).sum(axis = 1) + 1
    proba = np.mean(n_uniq != class_size)
    return {"est_proba": proba}

# declare all the settings to loop over
settings = grid(class_size=range(20, 30), n_sim=[100, 10_000, 1_000_000])

# use a runner to run over all the settings
runner = Runner(backend="threading", n_jobs=-1)
runner.run(func=birthday_experiment, settings=settings, progbar=True)

Features

This library also offers decorators to pipe to other sources.

  • memlists sends the json blobs to a list
  • memfile sends the json blobs to a file
  • memweb sends the json blobs to a server via http-post requests
  • memfunc sends the data to a callable that you supply, like print
  • grid generates a convenient grid for your experiments
  • random_grid generates a randomized grid for your experiments
  • time_taken also logs the time the function takes to run

We also offer an option to parallelize function calls using joblib. This is facilitated with a Runner class which supports multiple backends.

  • Runner(backend="loky")
  • Runner(backend="threading")
  • Runner(backend="multiprocessing")

Check the API docs here for more information on how these work.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

memo-0.2.3.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

memo-0.2.3-py2.py3-none-any.whl (13.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file memo-0.2.3.tar.gz.

File metadata

  • Download URL: memo-0.2.3.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.6

File hashes

Hashes for memo-0.2.3.tar.gz
Algorithm Hash digest
SHA256 a167c7ffe7688521c13306dad4954f9e7dfe3a4ad9388ebea17b1286fe9e57c8
MD5 f3ec80466e8776f290e930f534d63628
BLAKE2b-256 17ed98a257deaff4cf1c70484522bde8caffa4578285252a52d5fc58c08380af

See more details on using hashes here.

File details

Details for the file memo-0.2.3-py2.py3-none-any.whl.

File metadata

  • Download URL: memo-0.2.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.6

File hashes

Hashes for memo-0.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 24cf2c8461dfafc0f18febce6f032ef8167317539fd812e43edf22bfdd1278b7
MD5 cd50447d18bd1e535f3ffb0050e7d307
BLAKE2b-256 bd31cd73cc347fa691967c02e87a863e8a9dab9dfb3dcd4020e680c8592bf4b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page