memvectordb python client.
Project description
memvectorDB-python client
Getting Started
pip install memvectordb-python
To Initialize the Client
from memvectordb.collection import Collection
client = MemVectorDB(base_url = "base-url") # default http://127.0.0.1:8000
To Create Collection
# To create a new collection
collection_name = "collection_name"
dimension = "dimension-of-vectors-to-be-stored"
distance = "distance-metric" # either 'cosine', 'euclidean' or 'dot'
collection = client.create_collection(collection_name, dimension, distance)
To Get Collection
collection_name = "collection_name"
collection = client.get_collection(collection_name)
To Delete collection
collection_name = "collection_name"
collection = client.delete_collection(collection_name)
To Insert Vectors(streaming)
collection_name = "collection_name"
embedding = "embedding"
# example of embedding : {
# "id" : "1",
# "vector" :[0.14, 0.316, 0.433],
# "metadata": {
# "key1": "value1",
# "key2": "value2"
# }
# }
client.insert_embeddings(collection_name, embedding)
To Insert Vectors(batch)
collection_name = "collection_name"
embeddings = "embeddings"
# example of embeddings : [
# {
# "id": "1",
# "vector": [0.14, 0.316, 0.433],
# "metadata": {
# "key1": "value1",
# "key2": "value2"
# }
# },
# {
# "id": "2",
# "vector": [0.27, 0.531, 0.621],
# "metadata": {
# "key1": "value3",
# "key2": "value4"
# }
# }
# ]
client.update_embeddings(collection_name, embeddings)
To Query Vectors.
k = "number-of-items-to query"
collection_name = "collection_name"
query_vector = "query_vector"
# example of query_vector: [0.32654, 0.24423, 0.7655]
client.get_similarity(k, collection_name, query_vector)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file memvectordb_python-0.0.1.tar.gz
.
File metadata
- Download URL: memvectordb_python-0.0.1.tar.gz
- Upload date:
- Size: 2.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1f87fe1514ee385e606e158f5980863462355f351d15d523cf119e3ba10bc6e6 |
|
MD5 | 1963a07d5a7f895e0b7c8c534a564335 |
|
BLAKE2b-256 | 23e7fdd47e18330e55d026e572d65dea92778221b7edd797093e45b150b8bfe0 |
File details
Details for the file memvectordb_python-0.0.1-py2.py3-none-any.whl
.
File metadata
- Download URL: memvectordb_python-0.0.1-py2.py3-none-any.whl
- Upload date:
- Size: 3.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d4f566f770bb7044452e63f5b03cd652b58cc3e865b7f1ee605d9379caea77f |
|
MD5 | c60ea01236646808dcedf8b9c50343da |
|
BLAKE2b-256 | d2a37ab8c10411b3ef9a49d968ed65a69c2c748f68a831bf4ef29c7f79368680 |