Skip to main content

memvectordb python client.

Project description

memvectorDB-python client

Getting Started

pip install memvectordb-python

To Initialize the Client

from memvectordb.collection import Collection

client = MemVectorDB(base_url = "base-url") # default http://127.0.0.1:8000

To Create Collection

# To create a new collection
collection_name = "collection_name"
dimension = "dimension-of-vectors-to-be-stored"
distance = "distance-metric" # either 'cosine', 'euclidean' or 'dot'
collection = client.create_collection(collection_name, dimension, distance)

To Get Collection

collection_name = "collection_name"
collection = client.get_collection(collection_name)

To Delete collection

collection_name = "collection_name"
collection = client.delete_collection(collection_name)

To Insert Vectors(streaming)

collection_name = "collection_name"
embedding = "embedding"

# example of embedding : {
#                          "id" : "1",
#                          "vector" :[0.14, 0.316, 0.433], 
#                          "metadata": {
#                             "key1": "value1",
#                             "key2": "value2"
#                         }
#                     }
client.insert_embeddings(collection_name, embedding)

To Insert Vectors(batch)

collection_name = "collection_name"
embeddings = "embeddings"

# example of embeddings : [
#         {
#             "id": "1",
#             "vector": [0.14, 0.316, 0.433],
#             "metadata": {
#                 "key1": "value1",
#                 "key2": "value2"
#             }
#         },
#         {
#             "id": "2",
#             "vector": [0.27, 0.531, 0.621],
#             "metadata": {
#                 "key1": "value3",
#                 "key2": "value4"
#             }
#         }
#     ]
client.update_embeddings(collection_name, embeddings)

To Query Vectors.

k = "number-of-items-to query"
collection_name = "collection_name"
query_vector = "query_vector"

# example of query_vector: [0.32654, 0.24423, 0.7655] 

client.get_similarity(k, collection_name, query_vector)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

memvectordb_python-0.0.1.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

memvectordb_python-0.0.1-py2.py3-none-any.whl (3.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file memvectordb_python-0.0.1.tar.gz.

File metadata

  • Download URL: memvectordb_python-0.0.1.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for memvectordb_python-0.0.1.tar.gz
Algorithm Hash digest
SHA256 1f87fe1514ee385e606e158f5980863462355f351d15d523cf119e3ba10bc6e6
MD5 1963a07d5a7f895e0b7c8c534a564335
BLAKE2b-256 23e7fdd47e18330e55d026e572d65dea92778221b7edd797093e45b150b8bfe0

See more details on using hashes here.

File details

Details for the file memvectordb_python-0.0.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for memvectordb_python-0.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2d4f566f770bb7044452e63f5b03cd652b58cc3e865b7f1ee605d9379caea77f
MD5 c60ea01236646808dcedf8b9c50343da
BLAKE2b-256 d2a37ab8c10411b3ef9a49d968ed65a69c2c748f68a831bf4ef29c7f79368680

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page