Skip to main content

memvectordb python client.

Project description

memvectorDB-python client

Getting Started

pip install memvectordb-python

To Initialize the Client

from memvectordb.collection import Collection

client = MemVectorDB(base_url = "base-url") # default http://127.0.0.1:8000

To Create Collection

# To create a new collection
collection_name = "collection_name"
dimension = "dimension-of-vectors-to-be-stored"
distance = "distance-metric" # either 'cosine', 'euclidean' or 'dot'
collection = client.create_collection(collection_name, dimension, distance)

To Get Collection

collection_name = "collection_name"
collection = client.get_collection(collection_name)

To Delete collection

collection_name = "collection_name"
collection = client.delete_collection(collection_name)

To Insert Vectors(streaming)

collection_name = "collection_name"
embedding = {
    "id": "1",
    "vector": [0.14, 0.316, 0.433],
    "metadata": {
        "key1": "value1",
        "key2": "value2"
    }
}

client.insert_embeddings(
    collection_name=collection_name, 
    vector_id=embedding["id"], 
    vector=embedding["vector"], 
    metadata=embedding["metadata"]
)

To Insert Vectors(batch)

collection_name = "collection_name"
embeddings = [
    {
        "id": "1",
        "vector": [0.14, 0.316, 0.433],
        "metadata": {
            "key1": "value1",
            "key2": "value2"
        }
    },
    {
        "id": "2",
        "vector": [0.27, 0.531, 0.621],
        "metadata": {
            "key1": "value3",
            "key2": "value4"
        }
    }
]

client.batch_insert_embeddings(
        collection_name=collection_name, 
        embeddings = embeddings
    )

To Query Vectors.

k = "number-of-items-to query"
collection_name = "collection_name"
query_vector = "query_vector"

# example of query_vector: [0.32654, 0.24423, 0.7655] 
# ensure the dimensions match the collection's dimensions
client.query(collection_name, k, query_vector)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

memvectordb_python-0.0.3.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

memvectordb_python-0.0.3-py2.py3-none-any.whl (3.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file memvectordb_python-0.0.3.tar.gz.

File metadata

  • Download URL: memvectordb_python-0.0.3.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for memvectordb_python-0.0.3.tar.gz
Algorithm Hash digest
SHA256 e01e9e698d57323b28e31a921188d70c00e8e2c7a9a117c6f359a8d0b593e388
MD5 c4acd994af3cae7342b17dd9124db3bf
BLAKE2b-256 6cbf2ea39f3f54aa8bd5dd6e21bc26cbdb1a202650a61dded409fc13c04f3dd5

See more details on using hashes here.

File details

Details for the file memvectordb_python-0.0.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for memvectordb_python-0.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ceb8db0e2d4e9c72ef2e9a4eadb4abd8aabe36433af12c470b0034e0906e1936
MD5 91920eba5b462af39651fbf30d060987
BLAKE2b-256 480f8be9e559c3cb40757f37acafa23b5b2c0c7a74ad314b167d655a834c61c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page