Skip to main content

memvectordb python client.

Project description

memvectorDB-python client

Getting Started

pip install memvectordb-python

To Initialize the Client

from memvectordb.collection import Collection

client = MemVectorDB(base_url = "base-url") # default http://127.0.0.1:8000

To Create Collection

# To create a new collection
collection_name = "collection_name"
dimension = "dimension-of-vectors-to-be-stored"
distance = "distance-metric" # either 'cosine', 'euclidean' or 'dot'
collection = client.create_collection(collection_name, dimension, distance)

To Get Collection

collection_name = "collection_name"
collection = client.get_collection(collection_name)

To Delete collection

collection_name = "collection_name"
collection = client.delete_collection(collection_name)

To Insert Vectors(streaming)

collection_name = "collection_name"
embedding = {
    "id": "1",
    "vector": [0.14, 0.316, 0.433],
    "metadata": {
        "key1": "value1",
        "key2": "value2"
    }
}

client.insert_embeddings(
    collection_name=collection_name, 
    vector_id=embedding["id"], 
    vector=embedding["vector"], 
    metadata=embedding["metadata"]
)

To Insert Vectors(batch)

collection_name = "collection_name"
embeddings = [
    {
        "id": "1",
        "vector": [0.14, 0.316, 0.433],
        "metadata": {
            "key1": "value1",
            "key2": "value2"
        }
    },
    {
        "id": "2",
        "vector": [0.27, 0.531, 0.621],
        "metadata": {
            "key1": "value3",
            "key2": "value4"
        }
    }
]

client.batch_insert_embeddings(
        collection_name=collection_name, 
        embeddings = embeddings
    )

To Query Vectors.

k = "number-of-items-to query"
collection_name = "collection_name"
query_vector = "query_vector"

# example of query_vector: [0.32654, 0.24423, 0.7655] 
# ensure the dimensions match the collection's dimensions
client.query(collection_name, k, query_vector)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

memvectordb_python-0.0.4.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

memvectordb_python-0.0.4-py2.py3-none-any.whl (3.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file memvectordb_python-0.0.4.tar.gz.

File metadata

  • Download URL: memvectordb_python-0.0.4.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for memvectordb_python-0.0.4.tar.gz
Algorithm Hash digest
SHA256 82c217e51b239f763d949279fae4b8dc8bff274c310dfdef779553c0786095e0
MD5 0d6ce6f8eeae5ba2ec45a0ffd9f555c9
BLAKE2b-256 c8cae44449175562971be08b78fb68264d5407bcdbfc43928807cae768f58cda

See more details on using hashes here.

File details

Details for the file memvectordb_python-0.0.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for memvectordb_python-0.0.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 61f22cce4920e3c0af5ee8875273e54b2acd060d722f7f0056caa6ab6b28bbd1
MD5 b35cb1c243fe5285b5ae04d37a682f5b
BLAKE2b-256 ba66b6e890773c3566ac74b14370c7d2994fb765228225ce30907371f6051f57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page