Skip to main content

memvectordb python client.

Project description

memvectorDB-python client

Getting Started

pip install memvectordb-python

To Initialize the Client

from memvectordb.collection import Collection

client = MemVectorDB(base_url = "base-url") # default http://127.0.0.1:8000

To Create Collection

# To create a new collection
collection_name = "collection_name"
dimension = "dimension-of-vectors-to-be-stored"
distance = "distance-metric" # either 'cosine', 'euclidean' or 'dot'
collection = client.create_collection(collection_name, dimension, distance)

To Get Collection

collection_name = "collection_name"
collection = client.get_collection(collection_name)

To Delete collection

collection_name = "collection_name"
collection = client.delete_collection(collection_name)

To Insert Vectors(streaming)

collection_name = "collection_name"
embedding = {
    "id": "1",
    "vector": [0.14, 0.316, 0.433],
    "metadata": {
        "key1": "value1",
        "key2": "value2"
    }
}

client.insert_embeddings(
    collection_name=collection_name, 
    vector_id=embedding["id"], 
    vector=embedding["vector"], 
    metadata=embedding["metadata"]
)

To Insert Vectors(batch)

collection_name = "collection_name"
embeddings = [
    {
        "id": "1",
        "vector": [0.14, 0.316, 0.433],
        "metadata": {
            "key1": "value1",
            "key2": "value2"
        }
    },
    {
        "id": "2",
        "vector": [0.27, 0.531, 0.621],
        "metadata": {
            "key1": "value3",
            "key2": "value4"
        }
    }
]

client.batch_insert_embeddings(
        collection_name=collection_name, 
        embeddings = embeddings
    )

To Query Vectors.

k = "number-of-items-to query"
collection_name = "collection_name"
query_vector = "query_vector"

# example of query_vector: [0.32654, 0.24423, 0.7655] 
# ensure the dimensions match the collection's dimensions
client.query(collection_name, k, query_vector)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

memvectordb_python-0.0.5.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

memvectordb_python-0.0.5-py2.py3-none-any.whl (5.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file memvectordb_python-0.0.5.tar.gz.

File metadata

  • Download URL: memvectordb_python-0.0.5.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for memvectordb_python-0.0.5.tar.gz
Algorithm Hash digest
SHA256 fc42d5c189e17248a9588f479937352d9c51259b0ff1ef2dfbc2b6891e6974c4
MD5 7376336cfe04d97dd445dbf79ea573fb
BLAKE2b-256 360a5e39b710f5a7a1bfc5d9ded30bfe4f8aa9493e3f2ebfd6efe013bb0669d7

See more details on using hashes here.

File details

Details for the file memvectordb_python-0.0.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for memvectordb_python-0.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2566aa1d21b1d38ca29e16dbcbc17c583ba8ef1ecdd3548697149aa4d04777a5
MD5 c8bdce045bf548c501c8b74d9ff4c861
BLAKE2b-256 150d84463b5534e9891661d755d32091a1848516939e55e5d50e6fafb4cf995a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page