Skip to main content

memvectordb python client.

Project description

memvectorDB-python client

Getting Started

pip install memvectordb-python

To Initialize the Client

from memvectordb.collection import Collection

client = MemVectorDB(base_url = "base-url") # default http://127.0.0.1:8000

To Create Collection

# To create a new collection
collection_name = "collection_name"
dimension = "dimension-of-vectors-to-be-stored"
distance = "distance-metric" # either 'cosine', 'euclidean' or 'dot'
collection = client.create_collection(collection_name, dimension, distance)

To Get Collection

collection_name = "collection_name"
collection = client.get_collection(collection_name)

To Delete collection

collection_name = "collection_name"
collection = client.delete_collection(collection_name)

To Insert Vectors(streaming)

collection_name = "collection_name"
embedding = {
    "id": {
        "unique_id": "1"
    },
    "vector": [0.14, 0.316, 0.433],
    "metadata": {
        "key1": "value1",
        "key2": "value2"
    }
}
client.insert_embeddings(
    collection_name=collection_name, 
    vector_id=embedding["id"]['unique_id'], 
    vector=embedding["vector"], 
    metadata=embedding["metadata"]
)

To Insert Vectors(batch)

collection_name = "collection_name"
embeddings = [
    {
        "id": {
            "unique_id": "0"
        },
        "vector": [0.14, 0.316, 0.433],
        "metadata": {
            "key1": "value1",
            "key2": "value2"
        }
    },
    {
        "id": {
            "unique_id": "1"
        },
        "vector": [0.27, 0.531, 0.621],
        "metadata": {
            "key1": "value3",
            "key2": "value4"
        }
    },
    {
        "id": {
            "unique_id": "2"
        },
        "vector": [0.27, 0.531, 0.621],
        "metadata": {
            "key1": "value3",
            "key2": "value4"
        }
    }
]

client.batch_insert_embeddings(
        collection_name=collection_name, 
        embeddings = embeddings
    )

To Query Vectors.

k = "number-of-items-to query"
collection_name = "collection_name"
query_vector = "query_vector"

# example of query_vector: [0.32654, 0.24423, 0.7655] 
# ensure the dimensions match the collection's dimensions
client.query(collection_name, k, query_vector)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

memvectordb_python-0.0.6.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

memvectordb_python-0.0.6-py2.py3-none-any.whl (5.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file memvectordb_python-0.0.6.tar.gz.

File metadata

  • Download URL: memvectordb_python-0.0.6.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for memvectordb_python-0.0.6.tar.gz
Algorithm Hash digest
SHA256 ab9bd7006488a7647c33e07f8c0c244eef819722b024915cbe07aa560d315f6a
MD5 f104124eaf0ac3afce9feabef39ec69e
BLAKE2b-256 7d6e56e176aa53b6b8788b5a17ac2dedb8b917be07d282dccf797bd9846e4bcb

See more details on using hashes here.

File details

Details for the file memvectordb_python-0.0.6-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for memvectordb_python-0.0.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 887289e353161f4a1267ea5379298b833211f4fa7ae9b52732bbb46c3882aa0a
MD5 ba28a9af87f48242eab2037682e3bf6c
BLAKE2b-256 05bbebe69a167af0e420e1694875cf1c6f12b6016623cef49fb027385dd7af77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page