Skip to main content

Mera TVM: An End to End Tensor IR/DSL Stack for Deep Learning Systems, adapted to Mera (https://github.com/Edgecortix-Inc/mera) environment.

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mera_tvm_runtime-1.6.0-cp310-cp310-manylinux_2_27_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64

mera_tvm_runtime-1.6.0-cp38-cp38-manylinux_2_27_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64

File details

Details for the file mera_tvm_runtime-1.6.0-cp310-cp310-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: mera_tvm_runtime-1.6.0-cp310-cp310-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.10, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.31.0 requests-toolbelt/0.10.1 urllib3/1.26.6 tqdm/4.64.1 importlib-metadata/6.0.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.8.5

File hashes

Hashes for mera_tvm_runtime-1.6.0-cp310-cp310-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 7d524d1cdbce87362ae23d536388addc1eaf6328bd441b35466647efa5ddf6a7
MD5 b3e10286a68ca30bbab1fbfc766b4a5f
BLAKE2b-256 552720116d348f35373b41b83251fcd60e1b720701be488d6ba5f8a84062d7e0

See more details on using hashes here.

File details

Details for the file mera_tvm_runtime-1.6.0-cp38-cp38-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: mera_tvm_runtime-1.6.0-cp38-cp38-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.31.0 requests-toolbelt/0.10.1 urllib3/1.26.6 tqdm/4.64.1 importlib-metadata/6.0.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.8.5

File hashes

Hashes for mera_tvm_runtime-1.6.0-cp38-cp38-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 7a84c8278cf0f3f0124ef7b60b4617722a0d72430af92c7746bb895ccd3e2850
MD5 73b438fc2f19e6ebff9bde2dfb3a1c8e
BLAKE2b-256 acb6f9d01895bcc36b8bf2d9346c28a430d95c530fa62b16dbc2768801ffb748

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page