Skip to main content

Mera TVM: An End to End Tensor IR/DSL Stack for Deep Learning Systems, adapted to Mera (https://github.com/Edgecortix-Inc/mera) environment.

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.27+ x86-64

mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.27+ ARM64

File details

Details for the file mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_x86_64.whl.

File metadata

  • Download URL: mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.27+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_x86_64.whl
Algorithm Hash digest
SHA256 040b9754076f4466548726a0af1afb25ea93982726c429b26645b9a240688158
MD5 53ab310962d5aa49a8a67dc4a56cfdfa
BLAKE2b-256 f2fa45398b831469aee683e1e5b4dede80bc37998fb27f0709583e76a1ef305b

See more details on using hashes here.

File details

Details for the file mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_aarch64.whl.

File metadata

  • Download URL: mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_aarch64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.27+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for mera_tvm_runtime-1.0.post1-cp36-cp36m-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 b761a9822f9857b61071ec13ee25ed9d33370255147ec49389b16d022885c721
MD5 c6978e1dde651495efbb9c8a41ee950a
BLAKE2b-256 2d73bf7e4c250dd82dc57c82fe225e00eec318e7aa9e2c960a7fcf3e10a96db2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page